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Abstract 

 

 

Recent advances in spaceborne GPS technology have shown significant advantages 

in many aspects over conventional technologies. For instance, spaceborne GPS can 

realize autonomous orbit determination with significant savings in spacecraft life 

cycle, in power, and in mass. At present, the onboard orbit determination in real time 

or near-real time can typically achieve 3D orbital accuracy of metres to tens metres 

with Kalman filtering process, but 21st century space engineering requires onboard 

orbit accuracy of better than 5 metres, and even sub-metre for some space 

applications. The research focuses on the development of GPS-based autonomous 

orbit determination techniques for spacecraft. Contributions are made to the field of 

GPS-based orbit determination in the following five areas: 

 

Techniques to simplify the orbital dynamical models for onboard processing have 

been developed in order to reduce the computional burden while retaining full model 

accuracy. The Earth gravity acceleration approximation method was established to 

replace the traditional recursive acceleration computations. Results have 

demonstrated that with the computation burden for a 55×  spherical harmonic 

gravity model, we achieve the accuracy of a 7070×  model. Efforts were made for 

the simplification of solar & lunar ephemerides, atmosphere density model and orbit 

integration. All these techniques together enable a more accurate orbit integrator to 

operate onboard. 

 

Efficient algorithms for onboard GPS measurement outlier detection and 

measurement improvement have been developed.  In addition, a closed-form single 

point position method was implemented to provide an initial orbit solution without 

any a priori information.  

 

The third important contribution was made to the development of sliding-window 

short-arc orbit filtering techniques for onboard processing. With respect to the 

existing Kalman recursive filtering, the short-arc method is more stable because 
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more measurements are used. On the other hand, the short-arc method requires less 

accurate orbit dynamical model information compared to the long-arc method, thus it 

is suitable for onboard processing. Our results have demonstrated that by using the 1 

~ 2 revolutions of LEO code GPS data we can achieve an orbit accuracy of 1 ~ 2 

metres. Sliding-window techniques provide sub-metre level orbit determination 

solutions with 5~20 minutes delay. 

 

A software platform for the GPS orbit determination studies has been established. 

Methods of orbit determination in near-real time have been developed and tested. 

The software system includes orbit dynamical modelling, GPS data processing, orbit 

filtering and result analysis modules, providing an effective technical basis for 

further studies.  

 

Furthermore a ground-based near-real time orbit determination system has been 

established for FedSat, Australia’s first satellite in 30 years. The system generates 

10-metre level orbit solution with half-day latency on an operational basis. This 

system has supported the scientific missions of FedSat such as Ka-band tracking and 

GPS atmosphere studies within the Cooperative Research Centre for Satellite System 

(CRCSS) community. Though it is different from the onboard orbit determination, it 

provides important test-bed for the techniques described in previous section. 

 

This thesis focuses on the onboard orbit determination techniques that were 

discussed in Chapter 2 through Chapter 6. The proposed onboard orbit determination 

algorithms were successfully validated using real onboard GPS data collected from 

Topex/Poseidon, CHAMP and SAC-C satellites. 
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Chapter 1 

Introduction 
 

 

 

In this chapter a brief overview of Global Positioning System (GPS) based orbit 

determination is given, followed by an introduction to onboard orbit determination 

for Low Earth Orbiters (LEO). The objectives and scope of the research will be 

outlined, and the structure of the thesis is provided in the last section. 

 

1.1 GPS-based Orbit Determination for LEO Spacecraft 
 

1.1.1 Main Attractions of Spaceborne GPS 

 

Over the last two decades there has been tremendous advancement in GPS 

technology for a variety of applications. Spaceborne GPS is revolutionizing future 

spacecraft systems [Munjal, et al., 1992]. It has a combined capability of 

determining spacecraft trajectory and attitude, relative positioning between space 

vehicles, sounding the atmosphere, and delivering precise time synchronization to 

spacecraft electronics. The use of GPS receivers in Low Earth Orbit spacecraft 

systems has been quite common for both engineering and scientific purposes. In the 

relatively new applications, such as navigation in Geostationary Earth Orbit (GEO) 

[Christian, 2001], Geostationary Transfer Orbit (GTO), High Elliptical Orbit (HEO), 

space rendezvous, maneouvres and atmospheric re-entry, GPS receivers are the 

preferred navigation sensors, even though GPS–based navigation is, in many cases, 

still in the experimental phase or under development. The main applications of space 

GPS receivers include, but are not limited to, the following aspects.  

 

Real time orbit information for tracking and navigation applications: A spacecraft 

collecting GPS data with an onboard receiver can compute its 3D position and 

velocity in a diversity of ways, depending in part on the orbit and mission 
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requirements. The real time orbit state information can benefit both ground-station 

operation and onboard uses: simplifying ground tracking and operations, and 

significantly improving space vehicle autonomy [Potti, et al., 1995].  

 

Precise timing applications: In addition to position and velocity, the GPS receiver 

can also provide accurate reference time synchronized to UTC to better than 1µs. 

This accuracy can be useful for telecommunications and observations, and also for 

time synchronization between satellites and ground stations [Klepczynsk, 1996]. 

 

Attitude determination applications: Using three or four GPS antennas, the receiver 

can determine real time attitude information of the spacecraft to an accuracy of 0.5 

degree or better via processing carrier phase measurements [Lightsey, 1996]. 

Limitations of the separation of antennas and multipath effects on the spacecraft 

structure limit the achievable ` 

 

Scientific applications: Recorded raw dual-frequency measurements can be 

downloaded to ground stations for post-processing, which may lead to precise orbit 

solutions of the spacecraft required for scientific observation missions, including 

remote sensing. Raw data may also be used for earth science studies, such as gravity 

recovery, GPS atmosphere sounding and GPS ocean reflection [Bertiger, et al., 

1998].  

 

Among these applications what appears most remarkable is the capability of 

spaceborne GPS to provide accurate and/or autonomous satellite orbit determination, 

which serves for both space-engineering and scientific purposes, and finds 

applications in spacecraft tracking and navigation from near Earth to beyond 

geostationary altitudes. Orbit accuracy requirements can range from hundreds of 

metres to metres for engineering purposes, from one metre to a few centimetres for 

scientific applications.   

 

Spacecraft tracking and navigation requirements can include: 

• Real time state knowledge and active control during launch and orbit 

insertion, during re-entry and landing; 
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• Real time relative navigation between vehicles during rendezvous; 

• Autonomous station keeping; 

• Near-real time orbit knowledge for operations and orbit maintenance, rapid 

post-maneouver orbit recovery; and  

• After-the-fact precise orbit determination for scientific applications. 

 

This PhD research is concerned with the applications of using Global Positioning 

System (GPS) receivers for spacecraft tracking and navigation applications: ground- 

and space-based orbit determination approaches in general, addressing the particular 

challenges posed in GPS-based real time and near-real time onboard orbit 

determination. The next section presents the objective and scope of this research. 

 

1.1.2 Ground-based Precise Orbit Determination 

 

The techniques involved in these applications can be classified into direct GPS-

based orbit determination, and differential GPS precise orbit determination (POD). 

As illustrated in Figure 1, in the former case only flight GPS measurements are used 

for orbit tracking and/or autonomous navigation, achieving orbit accuracy of a few to 

hundreds of metres. In the latter case, the data collected at a global GPS tracking 

network of tens of stations are processed along with the flight data to achieve the 

orbit accuracy of better than 10 centimetres. Figure 1.1 illustrates the concepts of 

GPS-based satellite POD with a global differential GPS network.  

GPS

GPSGPS

GPS

LEO

GPS

 
Figure 1.1 Concepts of standalone (left) and global GPS orbit determination (right). 
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The potential of GPS to provide accurate and autonomous satellite orbit solution was 

noted early in its development. Early studies of direct GPS-based tracking can be 

found in a number of references [Farr, 1979], which addressed the applications from 

near-Earth to beyond geosynchronous orbit. Van Leeuween & Carrier [1997] 

examined GPS tracking of the Space Shuttle and Tapyley [1987] focused on 

autonomous near-Earth navigation. The recent studies and applications include those 

in Gill, et al.  [2001], which reported the BIRD satellite mission as a milestone 

towards GPS-based autonomous navigation; and Christian [2001] which examined 

the GPS receiver architecture and expected performance for autonomous navigation 

in High Elliptical Orbits (HEO). The first reported results from relative GPS 

navigation were those of the ETS-VII autonomous rendezvous using relative GPS 

navigation [Kawano, 1999], which achieved the accuracy of relative navigation of 

10m in position and 3cm/s in velocity. Further information can be found in the 

website [Spaceborne GPS mission directory, 2004, see Appendix B], which is a GPS 

mission directory, chronologically listing the space missions that have included a 

GPS receiver, or receivers, for any number of reasons. It is a comprehensive 

directory of missions that have been cited in the scientific literature, although it may 

not be an all-inclusive listing of spaceborne GPS missions flown. Mission 

descriptions, the capacity that the GPS receiver or receivers had, the model of GPS 

receiver, and references citing the mission are also given. 

 

Direct GPS orbit determination can meet the most stringent of the accuracy needs 

for spacecraft tracking and navigation for the most dynamically unpredictable 

vehicles. The orbit computation may be conducted onboard spacecraft in real time or 

at a ground-station in near-real time, or in both ways. There are two ways to obtain 

the orbit solutions: GPS navigation solutions (point positioning) and orbit 

filter/improvement solutions. GPS standard point positioning is as accurate in low 

orbit as on the ground: theoretically 10 to 20 metres with zero Selective Availability. 

Any orbit below 3000km is considered Low Earth Orbit (LEO) in this context. 

Below 3000km altitude, signals from 10 or more GPS satellites are typically 

received by an upward-looking antenna with the current GPS constellation, reaching 

the receiver with nearly uniform power levels and geometric distribution above the 

horizon. Above 3000km altitude, the condition for receiving GPS signals becomes 

much less favourable [Mehlen, 2000]. Received signal power typically decreases 
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because: (1) the transmitted power of some signals drops off as a result of the 

attenuation pattern of the transmitting GPS satellite and (2) the ranges to many of the 

visible satellites increase. As a result, the number of visible or receivable satellites 

by an up-looking antenna drops dramatically in orbits above 3000km. The flight data 

from an onboard receiver would have difficulty generating a single-point solution 

above 3000km. In any orbit there is also a not uncommon problem: some onboard 

GPS receivers cannot operate all the time, due to reasons such as limitations of the 

onboard power supply. As a result, a continuous supply of navigation solutions is not 

always possible.  

 

An orbit filter procedure can provide better orbit solutions, meeting the stringent 

orbit accuracy requirements for GPS tracking and navigation services to satellites in 

different orbits, ranging from above the Earth surface, below 3000km, 3000km to 

20,000km, Geosynchronous and High Elliptical Orbits. The orbit filter (OF) uses the 

GPS measurements or navigation solutions (measurements normally sampled at rates 

of seconds to minutes) over a data arc of tens of minutes to hours in length, to 

estimate the state vector for each epoch state. Functioning along with the orbit filter 

is an orbit integrator (OI), which propagates the state between state update epochs, 

and hours to days forward for real time tracking when required. In general, an orbit 

filter provides smooth and continuous orbit solutions, achieved with an additional 

piece of software. The early studies of using GPS flight data for precise real time 

LEO navigation testing were reported in Bertiger, et al. [1998], which demonstrated 

that the 3D RMS orbit error of 4 ~ 6 metres was achieved after cold start of 4 hours, 

using broadcast GPS orbits and non-zero SA signals for Topex/Poseidon at 1340km 

altitude. The recently reported results [Da Kuang, et al., 2001] from filtering 

processing of T/P flight data with zero SA indicates that orbit positional accuracy at 

the 1 to 2 metre level is achievable, while the results from processing of GPS/MET 

flight data with zero SA indicates the 3D orbit accuracy of 6 to 8 metres.  

 

Differential GPS Precise Orbit Determination (POD) can meet the requirements for 

orbit accuracies ranging from 1 metre down to a few centimetres. POD techniques 

with differential GPS was initially developed for non-real time applications, which 

can tolerate the delay of 24 hours to several days after data collection. But later on 

near-real time processing of GPS tracking data could routinely provide LEO orbit 
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determination accuracy at the level of 5cm to 10cm with delay of 10 hours by the Jet 

Propulsion Laboratory (JPL) and other space organizations. Recent improvements in 

JPL’s GIPSY-OASIS II processing system have enabled turn around at the 1-hour 

level or better for such precise orbit determination. Further development will allow 

real time orbit determination with NASA’s global differential GPS correction signals 

broadcast via communication satellites. The concept is also shown in Figure 1.1 

(right). 

 

The key to achieving near-real time and real time POD is to implement a highly 

automated procedure to collect and process the global GPS tracking data for precise 

GPS orbits and clocks, then distribute the solutions to users (onboard or on the 

ground) in a few tens of minutes to hours (near-real time) or seconds to minutes (real 

time). Studies for real time orbit determination have shown that with precise GPS 

orbits and clocks, the RMS accuracy at the decimetre level for radial and cross-track 

components can be achieved a few hours after an initial cold start for T/P, and the 

RMS accuracy was 20cm to 70cm for GPS/Met satellite, which has lower orbit 

(700km) for which the drag and gravitational forces are less well modelled. 

 

There are three basic strategies presently in use to determine precise LEO orbits with 

GPS. They are the dynamic, the kinematic or non-dynamic, and the hybrid or 

reduced-dynamic strategies.  

 

1.1.3 Onboard Orbit Determination 

 

Onboard Orbit Determination invariably performs orbit computations in the receiver 

or onboard the electronics in real time. The techniques involved in this application 

also include direct GPS-based orbit determination, and differential GPS precise orbit 

determination (POD).  The choices depend on the signals available for the receiver 

in orbit to use: standalone GPS signals and differential messages. For instance, a 

normal space GPS receiver can only perform direct GPS-based OD determination 

with standalone GPS signals, while a GPS/WAAS or GPS/EGNOS capable receiver 

can choose to use the differential techniques for improved onboard orbit solutions. In 

any case, in addition to onboard navigation solutions (ONS) directly obtained from 

the space GPS receiver, the central point of onboard OD is the implementation of the 
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above OD capability on the orbit electronics for improved or precise orbit solutions. 

Due to significant differences in computing resources and requirements for orbit 

information between onboard and on the ground, this implementation is challenging 

both engineering and science. The focus of this work is to develop efficient models 

and algorithms for onboard orbit determination, mainly addressing the scientific 

challenges, instead of the engineering ones. 

 

In contrast to onboard OD, a closely related concept is the ground-based POD and 

ground-based autonomous LEO tracking for real time orbit information using GPS 

measurements and ground-based satellite tracking and orbit determination. Table 1.1 

summarizes the characteristics of these concepts, showing the similarity and 

differences of these methods. It is seen that onboard OD makes use of limited 

resources to achieve the orbit accuracy for advanced space engineering and certain 

scientific applications. 

 

1.2 The Objectives and Main Contributions of the Study 
 

1.2.1 Major Research Objectives  

 

The overall objective of this research is to develop a robust and accurate onboard 

orbit determination (OD) algorithm for Low Earth Orbiting (LEO) spacecraft with 

onboard GPS facility. The goal is to autonomously process GPS pseudo-ranges, in 

real time, to produce orbit estimates with RMS accuracy at metre levels for satellites. 

“Real time” here means that the orbit state with the given accuracy is made available 

within seconds to tens of minutes after the last observation is made. In particular, the 

research will address a number of scientific challenges for onboard orbit 

determination, in order to achieve the overall objective.  
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Table 1.1 Summary of GPS-based orbit determination. 
 Ground-based Precise 

Orbit Determination  
(Ground-based POD) 

Ground-based real 
time LEO tracking or 
Real time Orbit 
Determination (RT 
OD)  

Onboard LEO Orbit 
Determination  
(Onboard OD) 

Observations 
available  

All GPS measurements 
and others such as SLR 
and precise GPS orbits  

Standalone or DGPS 
measurements and 
other sources of ground 
tracking data  

Standalone GPS code 
measurements and 
phase smoothed GPS 
code measurements 

Mission objectives Provide post-fitted 
orbit solutions as 
accurately as possible, 
with delay hours to 
days 

Provide predicted LEO 
orbit knowledge for 
real time tracking and 
ground-based 
spacecraft operation 
application 

Provide accurate orbit 
knowledge on board 
spacecraft for 
autonomous operation 
and navigation in real 
time or near real time 
in space 

Methods  
 
 

Differential GPS POD, 
with data from global 
GPS tracking network 
or precise GPS orbits 
from the networks 

Direct GPS orbit 
estimation, with GPS 
broadcast orbits or 
precise predicted orbits 

Direct GPS orbit 
estimation, with GPS 
broadcast orbits from 
GPS or Geostationary 
satellites 

Degree of autonomy  
 

Desirable, but not 
required 

Required  Required 

Orbital positional 
accuracy (3D RMS) 

Centimetres to sub-
metre 
 

Metres to tens of 
metres  

Typically metres to ten 
metres, moving 
towards sub-metre 

Orbital velocity 
accuracy (3D RMS) 

Typically 0.1mm/s to 
mm/s 

Typically cm/s Typically m/s to cm/s 

Applications 
 

Geosciences, ocean 
altimetres, gravity 
recovery, imagery 
satellites 

Satellite tracking, and 
operation 

Autonomous 
navigation, orbit 
knowledge for space 
engineering in future 

 

• Develop techniques to simplify the orbital dynamical models for onboard 

processing, in order to reduce the computing burden, which is critical for 

onboard computing, while possibly retaining full model accuracy. One focus 

is the Earth gravity acceleration approximation, aiming to achieve the 

accuracy of a 7070×  spherical harmonic model with the computational load 

of a 55×  gravity model. Simplification of the solar & lunar ephemerides, 

atmosphere density model and orbit integrator will also be discussed. All 

these techniques together enable a precise accuracy onboard orbit integrator. 

• Examine and implement efficient quality control and improvement 

algorithms for onboard GPS measurements, for instance, outlier detection 

and phase smoothing, which will also lead to reduction of data points from 

seconds to minutes for more efficient onboard computations. 
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• Develop and test the short-arc orbit filtering techniques for onboard orbit 

determination. With respect to the existing Kalman recursive filtering, the 

short-arc method is more stable because more measurements are used. On the 

other hand, short-arc methods require less orbit dynamical model information 

compared to long-arc methods. The goal is to achieve a few metres orbit 

accuracy with data arc as short as a few revolutions of LEO orbits, using 

code GPS data.  

• Establish a software platform to test and implement the above algorithms and 

ground-based FedSat orbit determination. The software system includes orbit 

dynamical modelling, GPS data processing and result analysis modules, 

providing an effective technical basis for further studies. It also routinely 

provides orbit determination service to the FedSat project, which gives tens 

of metres positional accuracy with a half-day delay. 

 

1.2.2 Benefits of the Research 

 

Recent advances in spaceborne GPS technology have shown significant advantages 

in many aspects the conventional technologies. On the one hand, accurate and 

autonomous spaceborne orbit determination onboard spaceborne can result in 

significant savings in spacecraft life cycle cost, in power, and in mass. The 21st 

century space engineering requires onboard orbit accuracy of better than 5 metres. 

On the other hand, it is desirable that sub-metre accuracy is achievable onboard for 

scientific and engineering applications, such as in the case of imaging satellites. The 

research focuses on the development of precise GPS-based autonomous orbit 

determination techniques for space engineering and science applications. This topic 

has attracted significant attention [Ashkenazi, et al., 1997; Gold, et al., 1994a; Hart, 

et al., 1996; Lichten, et al., 1995a; Pradines, et al., 1993; Spardley, 1993; Tu, 1990]. 

With GPS Selective Availability (SA) being turned off on 2 May 2000, it has 

become more attractive for space engineering. Space mission planners need very 

accurate states of the satellites, i.e., position, velocity and/or attitude information, in 

real time or near-real time at an accuracy of centimetres to tens of metres, while 

minimizing dependence on ground-based tracking assets [Cruickshank, 1998]. In 

addition, it is desirable to perform OD in real-time, onboard an Earth orbiting 
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satellite, where accurate position, velocity and attitude information are made 

available for other satellite instruments [Hart, et al., 1996].  

 

Several onboard orbit determination systems have been developed in previous years. 

They will be discussed in detail in Chapter 2. We proposed an onboard orbit 

determination method addressing both the accuracy and stability problems of current 

methods. 

 

1.2.3 Scope of the Research 

 

This research focuses on software aspects of the onboard GPS orbit determination 

problem. As the computation will need to take time to complete after each data 

output, strictly speaking, this is a near-real time solution. However, by prediction, 

the system can provide real time precise orbit knowledge to cover the delay due to 

the computation, which can be several to tens of minutes. In addition, although the 

techniques have been thoroughly tested using real LEO GPS data, additional efforts 

are needed to implement the algorithms into a real hardware platform. Issues of 

computing speed; memory usage and power consumption must be re-visited from the 

point of view of software and hardware engineering. To reach an optimal 

performance, revisions to the proposed methods are also required for optimal 

portability to the actual computing system. 

 

1.3 Organization of the Thesis 
 

This thesis is organized as follows: 

 

Chapter 1 gives a brief overview of the Global Positioning System (GPS), followed 

by an introduction to GPS-based orbit determination for Low Earth Orbiters (LEO).  

The objectives and scope of the research are outlined, and the structure of the thesis 

is provided.  

 

Chapter 2 summarizes the principles of existing onboard orbit determination 

techniques. A review of LEO missions using GPS for tracking and navigation is 
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given first. Next, the performance of the onboard orbit solutions in these missions is 

discussed. Following this, we introduce three existing algorithms for onboard orbit 

determination: extended dynamic filter, phase-connected kinematics filter and 

onboard SGP4 filter. Finally, we outline the ideas of the short-arc orbit filter to be 

studied in this thesis. 

 

Chapter 3 first gives a detailed review of the orbit dynamical models. Considering 

the limitations of power and computing capacity onboard a spacecraft, a full 

dynamical model is not possible, especially on small LEO satellites. Model 

simplification is discussed to make the onboard least squares filter feasible. In this 

chapter, different schemes for orbit model simplification are examined and new 

simplification methods are proposed. 

 

Chapter 4 continues the study of orbital model simplifications and describes an 

alternative method to calculate the Earth gravity acceleration. An Earth gravity 

acceleration approximation method was developed. Instead of calculating the 

harmonic coefficients using recursive algorithm, an Earth pseudo-centre grid was 

generated on the ground and a simple two-step interpolator was used to recover the 

gravity acceleration on-the-fly. The results show that the computational burden of 

the method is equivalent to that of a 55×  gravity model with the accuracy of a 

7070×  model. 

 

Chapter 5 deals with quality control and improvement of onboard GPS 

measurements and navigation solutions, which are normally worse than those 

obtained on the ground due to the harsh observation conditions in space. This mostly 

concerns the issue of outlier detection. In addition, the chapter develops phase 

smoothing procedures to allow clean and compacted GPS data for efficient onboard 

orbit estimation. 

 

Chapter 6 discusses the least square filter techniques. The orbit dynamics of LEO 

satellites will be analyzed. An effort is made to test the simple, but robust, dynamic 

method- a short-arc batch estimation, in order to address both orbit accuracy and 

computational burden issues for onboard orbit determination with GPS code 

measurements. Furthermore, the sliding-window short-arc method is implemented to 
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fulfill the requirement for near-real time orbit determination. It updates the 

processing arc every 5 ~ 40 minutes, and generates the orbit solution in 10~40 

minute delays with metre-level accuracy. 

 

Chapter 7 presents strategies and results of the Australian Federal Government 

Satellite (FedSat) orbit determination. The requirement for FedSat orbit 

determination will be outlined and its onboard GPS receiver operation limitations 

analyzed. The orbit determination results with different methods are presented and 

discussed. The research effort finally leads to the establishment of a ground-based 

autonomous orbit determination system.  

 

Finally, Chapter 8 summarizes the main findings of this thesis and gives suggestions 

for future research. 

 

This thesis focuses on the onboard orbit determination techniques that were 

discussed in Chapter 2 through Chapter 6. The proposed onboard orbit determination 

algorithms were successfully validated using real onboard GPS data collected from 

Topex/Poseidon, CHAMP and SAC-C satellites. On the other hand, Chapter 7, 

addressing the ground-based orbit determination for FedSat project, has been 

included this thesis because this part of research work is very important during 

author’s PhD study, and this part of work provided a basis, and test bed for the 

onboard orbit determination development. Furthermore, the software package for 

ground-based orbit determination is very helpful to the onboard research work. 
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Chapter 2 

A Review of Onboard Orbit Determination 

Using GPS 
 

 

 

In this chapter, a review for Low Earth Orbit satellite missions using GPS for 

tracking and navigation is presented. Next, performance of the onboard orbit 

solutions in these missions is discussed. Following this, four existing algorithms for 

onboard orbit determination are introduced: onboard navigation solution, extended 

dynamic filter, phase-connected kinematics filter and onboard SGP4 filter. The last 

section outlines the concepts of the short-arc orbit filter to be developed in this 

thesis. 

 

2.1 Overview of GPS-based LEO missions and Onboard Orbit 

Determination Systems 
 

2.1.1 Missions Overview 

 

Space missions that have included a GPS receiver or receivers for any number of 

reasons are listed in Appendix B extracted from detailed information (Space Mission 

Directory, 2004). Our interest is the onboard orbit determination in real time or near-

real time. Real time, in-orbit OD results are referred to sparingly in the following list 

of literature. For convenience of analysis, Table 2.1 summarises the representative 

missions that have GPS-based onboard orbit determination capacity in support of the 

space engineering and scientific applications. According to this analysis, we make 

the following observations: 

• Although there have been over 100 missions that included a GPS receiver (or 

receivers), only some of the missions since 1996 have had the onboard orbit 

determination capability.  
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• According to the results reported for many of the missions, the GPS-based 

onboard navigation solutions are apparently worse than those achievable on 

the ground. The onboard orbit filtering accuracy is not necessarily always 

better than that of the onboard navigation solution, but a filter provides 

continuous solutions; 

• The high-accuracy onboard orbit results were often obtained only for the 

high-cost space missions, and 

• The existing onboard orbit determination algorithms mostly use an Extended 

Kalman filter (EKF). 

 

2.1.2 Onboard OD Software System 

 

There are several real time onboard software systems used in the above missions. 

Examples are JPL’s Real time GIPSY [Lichten, et al., 1995b], the Microcosm 

autonomous Navigation System (MANS) [Collins & Conger, 1994], the Brazilian 

National Institute of Space Research’s (INPE’s) ORBesT [Lopes & Kuga, 1997] and 

GSFC’s GEODE [Hart, et al., 1997b]. Also, the University of Nottingham’s Institute 

of Engineering Surveying & Space Geodesy (IESSG) developed another unnamed 

system [Ashkenazi, et al., 1997]. There is currently no published information on 

space qualified (actually flown in space) precise, real time OD software.  

 

JPL’s Real time GIPSY (RTG) 

 

RTG is an ANSI C version of GOA-II created by JPL to accommodate high data 

rates (1 Hz) and improve portability to systems other than UNIX. JPL’s goal is to 

incorporate all the precise models from GOA-II, make it suitable for embedded 

systems such as GPS receivers and make it capable of real time processing [Bertiger, 

1998]. Compiler options in RTG allow it to be scaled down to meet various 

processor load requirements. To provide the best accuracy, RTG is to be used in 

conjunction with a global Wide Area Augmentation System (WAAS) or a Wide 

Area Differential GPS (WADGPS) system. Without WAAS or WADGPS, RTG has 

shown 3D RMS values in the 4~6 meter range when used to process T/P data with 
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the broadcast GPS ephemeris and SA on [Bertiger, et al., 1998]. The following is a 

summary of the characteristics of RTG [Hurst, 2004]: 

• Precise dynamic models for orbiting receivers: arbitrary-sized gravity fields, 

drag model, empirical spacecraft accelerations, general-purpose variable step 

integrator; 

• General relativity and light time calculations; 

• General purpose factorized Kalman filter: current state or epoch state, 

process noise on any parametre,  prediction residual test for outlier detection ; 

• Minimized load size (400 Kbytes) with fast throughput for flight CPUs; 

• Efficient CPU utilization: RTG will use ~ 0.1% of 99 MHz HP 9000/735 

workstation for LEO flight GPS data processing (at 0.03 Hz data rate) and 

RAD6000 (RISC) flight processors are about 2.5 times slower load size ~ 

400 Kbytes (currently); 

• Other platforms include PowerPC 603e chip (RISC). 

 

GEODE at GSFC 

 

The GSFC-developed GEODE is a real time software analysis package [Hart, et al., 

1997b]. GEODE is highly modular, programmed in ANSI C and has been targeted to 

UNIX and PC systems as well as the RAD6000 RISC microprocessor. It requires a 

modest 400 Kbytes of computer RAM. GEODE was originally designed as 

experimental software to fly on the SSTI Lewis satellite contracted by NASA to 

TRW [Hart, et al., 1997a]. GEODE is implemented with an Extended Kalman Filter 

(EKF), which feeds a real time state propagator. GEODE is designed to be hosted on 

either a spacecraft flight computer, or in a GPS receiver’s processing unit. Pre-

launch orbit determination studies using GEODE indicate that σ1  orbit accuracy of 

10m in position, and 0.01m/s in velocity may be attained in the presence of SA. 

Below is a summary of relevant information concerning GEODE [Lee & Long, 

1999]: 
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Table 2.1 Summary of onboard GPS-based orbit determination missions and results. 
Missions Orbit Determination Method Accuracy achieved 
Space Flyer Unit (SFU),  
March 1995, 
[Ichikawa, et al., 1995] 

Onboard navigation solution (ONS) 
and extended Kalman filter (EKF) 

positional error of 200m and 
velocity error of 0.5m/s for 
both ONS and EKF; 

The Extreme Ultraviolet 
Explorer (EUVE),  
June 1992, 
[Gold, et al., 1994a, 1994b] 

EKF with Reduced Dynamic 
Tracking (RDT) and single frequency 
Group and Phase Inonospheric 
Calibration (GRAPHIC) techniques.  
The truncated Earth gravity model is 
also used. 

Produced real time total 
position accuracies of about 
60m (1σ) and velocity 
accuracies of 1.5m (1σ), 
with occasional spikes of 
over 500m and 5m/s for the 
position and velocity, 
respectively 

PoSAT-1, 
September 1993, 
[Unwin, 1993, Unwin & 
Sweeting 1994,1995] 

Onboard navigation solution (ONS) 
and onboard SGP4 filter. The 
receiver was turned on for only one 
orbit per day. 

100m accuracy for ONS, 
and 1.5km for onboard 
SGP4. 

The U.S. Advanced Research 
Projects Agency (ARPA) 
SATellite (DARPASAT), 
March 1994, 
[Cubbedge & Higbee 1994; 
Nicastri, 1992; Mitchell, et 
al. 1996] 

Onboard navigation solution (ONS) Accuracy of 350m. The 
navigation solution was 
however compared to radar 
range vectors 

GPS/MET, 
April 1995, 
[Hajj, et al., 1995] 

Onboard navigation solution (ONS) A receiver navigation 
solution accuracy of 46m 
was achieved in one test. 

Wake Shield Facility-02, 
November 1996, 
[Schltz, et al., 1995] 

Onboard navigation solution (ONS) Produced a solution 
accuracy of 62.6m with a 
post-processed least squares 
fit of an orbit to a navigation 
solution. 

SSTI Lewis, 
August 1997, 
[Hart, et al., 1996, 1997a] 

Onboard GEODE flight software 
using an EKF. 

Proposes real time total one 
sigma position and velocity 
accuracy of 20m and 
0.03m/s, respectively 

Bi-spectral Infra-Red 
Detection (BIRD), 
October 2001, 
[Gill, et al., 2001] 
 

Onboard navigation solution, 
Onboard EKF filter and SGP4 filter. 
Simplified orbital model is used. 
Furthermore, an advanced numerical 
integration scheme (RKF4R) was 
implemented. 

The ONS generates a 40m 
accuracy solution. A peak 
error of 25m and a filter 
standard deviation of 5.6m 
can be achieved with EKF, 
and the orbit can be 
predicted for 30 minutes 
with the error of 90m. 

FedSat, 
December 2002, 
[Feng, et al., 2003] 

Onboard navigation solution (ONS) A 3D positional RMS error 
of 56m was achieved for 
ONS solution. 

 

• JGM-2 3030×  spherical harmonic gravity model; 

• Solar and Lunar point mass 3rd body force model; 

• Harris-Priester atmospheric drag model; 

• Geometrical editing of measurements with high ionospheric errors; 

• Broadcast GPS ephemerides used; 
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• Extended Kalman Filter (EKF) implemented; 

• UDU factorized state error covariance; 

• Uplink of polar motion coefficients, accurate a priori state information and a 

priori state error and process noise covariance terms; 

• Processes pseudo-range measurements only. 

 

During one test using the GPS/MET data it took less than one minute to process the 

entire 24 hours of data on a 450 MHz Pentium II with 128 Mbytes RAM. The filter 

converged after about two hours of data and yielded a converged 3D RMS error of 

11.61m [Hart, et al., 1997b]. 

 

The University of Nottingham’s Study 

 

In a study for the UK Defense and Evaluation Research Agency (DERA), The 

Institute of Engineering Surveying & Geodesy (IESSG) at the University of 

Nottingham developed an extended Kalman filter, using Reduced Dynamic Tracking 

(RDT), to generate real time satellite position estimates with a radial RMS error of 

1.08m σ1  and a 3D RMS error of 3.95m σ1  [Ashkenazi, et al., 1997]. IESSG used 

real and simulated Standard Positioning System (SPS) data from T/P. They reported 

the filter converged after approximately five hours [Chen, 1998]. They used a JGM-

2 4545× gravity field, a simplified drag model (due to the T/P’s relatively high 

orbit), and broadcast GPS ephemerides. The application required approximately 500 

Kbytes of computer memory and the code could produce solutions within one 

minute of recording an observation. A trade study between microprocessor was also 

performed finding a military standard 1750A microprocessor (8086 equivalent) to be 

more than capable of producing the solutions each minute [Ashkenazi, et al., 1997]. 

 

2.1.3 LEO Missions Used in the Simulation Experiments 

 

To this end we have introduced four LEO missions using onboard GPS data in their 

experimental tests. Their orbit characteristics are summarized in Table 2.2. These 

missions are described below. The data sets collected from these missions will be 

used in this thesis for experiments and analysis.  
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Table 2.2 Summary of CHAMP, SAC-C, T/P and FedSat orbit characteristics. 

 CHAMP SAC-C T/P FedSat 
Mean Orbit Altitude (kilometre) 474 703 1340 802.92 
Inclination (degree) 87.27 98.25 66 98.673 
Eccentricity 0.00396 0.000655 0.000 0.002 
Orbit Period (minutes) 94 99 112 100.9 

 

Topex/Poseidon (T/P) 

 

T/P is a joint project between the National Aeronautics and Space Administration 

(NASA) and the French Space Agency, Centre National d’Etudes Spatiales (CNES). 

The T/P satellite carries a 6-channel Motorola Monarch Receiver, GPS 

demonstration receiver (GPSDR), which is capable of collecting dual-frequency 

( 1L / 2L ) data when the GPS anti-spoofing (AS) function is inactive.  

 

CHAMP 

 

The CHAMP satellite was launched in July 2000 into a circular orbit of 450 

kilometres to support geoscientific and atmospheric research. The mission is 

managed by GFZ in Germany. The GPS payload consists of a JPL BlackJack 

receiver with 3 antennas, the one facing up provides data for precise orbit 

determination services, the one facing down is for GPS altimeter studies and there is 

a limb antenna for atmospheric sounding. 

 

SAC-C 

 

SAC-C is an international cooperative mission between NASA and the Argentine 

Commission on Space Activities (CONAE). SAC-C will provide multi-spectral 

imaging of terrestrial and coastal environments. It carries a TurboRogue III GPS and 

four high gain antennas developed by the JPL. It is capable of automatically 

acquiring selected GPS transmissions that are refracted by the Earth’s atmosphere 

and reflected from the Earth’s surface. 
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FedSat 

 

FedSat is an Australian scientific micro-satellite mission, a 50cm cube weighing 

approximately 58 kg. It was launched in December 2002 by Japan's National Space 

Development Agency. Its purposes are: to establish Australian capability in micro- 

satellite technologies; to develop expertise necessary for sustaining those industries 

and profiting from them; to test and develop Australian-developed intellectual 

property; and to provide a research platform for Australian space-science, 

communication and GPS studies. FedSat is being developed by the Cooperative 

Research Centre for Satellite Systems (CRCSS), which combines the resources and 

skills of 12 Australian organizations. Contributions from each of the partner 

organizations are doubled by the Commonwealth Government, under its 

Commonwealth Government's Cooperative Research Centre's Program.  

 

2.2 Onboard GPS Navigation Solutions 
 

The direct orbit solutions that a GPS receiver onboard a spacecraft shall provide are 

the onboard navigation solutions (ONS), also called “Single Point Positioning 

(SPP)”solutions. The positioning accuracy was better than 100 metres in the 

horizontal components, and better than 156 metres in the vertical component (at the 

95% confidence level) when Selectivity Availability (SA) was the dominant source 

of error for SPP solutions (introduced on 25 March 1990). After SA was turned off 

on 1 May 2000, the improvement in instantaneous accuracy of GPS-SPP is clearly 

seen for the period immediately before and after SA was ‘switched off’. Figure 2.2 

shows this change for a terrestrial GPS receiver. Onboard stand-alone GPS 

navigation solutions are as accurate in low earth orbit as solutions on the ground. 

Currently a RMS positional accuracy of 10 to 20 metres is achieved by using the 

civilian broadcast GPS signals. This provides the simplest way for the onboard orbit 

determination. The results of previous LEO missions show a consistent accuracy, 

normally tens to one hundred metres accuracy were achieved when the SA was 

active, and tens metres accuracy in the absence of SA. 
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Although the ONS solution can satisfy many space applications, dynamical filtering 

techniques are still required in the following circumstances:  

• when a higher orbit accuracy, for instance, at the metre or even sub-metre 

level, is needed to satisfy advanced space engineering applications, including 

satellite flying formation and docking, etc [Da Kuang, et al., 2001]; 

• where continuous and predicted orbit information is required, but GPS 

navigation solutions are only available at discrete time epochs, especially 

when onboard GPS operates intermittently. For instance, the Australia 

Federation satellite - FedSat operates 2-by-10 minutes per orbit period, 

because of the restrictions of the on-board power supply [Feng, 1999]; 

• where visible satellites are sometimes less than four, resulting in onboard 

navigation solutions not being provided on a regular basis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 T/P (upper-left), SAC-C (upper-right), CHAMP (lower-left) and FedSat 

(lower-right), respectively. 
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Figure 2.2 GPS Single Point Position (SPP) accuracy before and after the SA 

“switched off” for a terrestrial GPS receiver. [Hydraulics laboratory, 2004]. 

 

A positional accuracy of 10 ~ 20 metres satisfies most engineering requirements, and 

this requirement may be satisfied by the ONS without any additional effort, Indeed, 

ONS is the simplest OD strategy available, and desirable if the requirement can be 

met. In reality, it seems that most onboard orbit determination applications do not 

rely on the ONS solutions from the GPS receiver. To ensure robust and continuous 

onboard orbit solutions, some kind of filtering process is needed. The following 

sections will review different filtering strategies. 

 

2.3 Extended Kalman Filter 
 

An Extended Kalman filter provides a well established means for LEO orbit 

determination, and is a popular algorithm choice for most onboard OD applications 

due to its emphasis on both computing simplicity and accuracy. A Kalman filter- 
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based orbit determination process generates estimates of the instantaneous spacecraft 

state vector at discrete time steps that usually coincide with the arrival of new 

measurements. It operates in a sequential manner and does not demand the storage of 

previous measurements. However, it can properly use previous measurements and 

orbital information through the adjustment of the Kalman Gain. The system model 

errors can also be compensated for by means of process noise. These good 

characteristics make it a good choice for onboard data processing. 

 

2.3.1 The Observation Models 

 

Typically, numerical methods of varying complexity are applied to propagate the 

state vector between measurements. The satellite dynamical model is necessary for 

this purpose. Due to the limit of onboard memory and computing capability, most 

onboard applications use a simplified orbital model. This includes a truncated or 

simplified Earth gravitational model, which omits higher order spherical items. By 

reviewing the available onboard OD systems, a practical orbit model can be 

described as: 

• Using a truncated Earth gravitational model by considering only up to 

spherical harmonic degree and order of 10, depending on different 

requirements. Some missions even use a pre-tuned specific gravitation model. 

• Only considering the Earth rotation matrix when transforming from Earth-

fixed frame to the inertial celestial frame (ICRF). This means the nutation, 

precession effects are neglected. 

• Ignoring the drag and solar radiation pressure, as well as the gravitational 

perturbations from the Sun and the Moon. 

• Using a simple Runge-Kutta 4(5) order integrator. 

 

Of course, this only illustrates a general dynamical model for the onboard filter, and 

some missions use a more complicated model. Some even use a Keplerian one.  

 

For the onboard orbit determination problem, the linear continuous state propagation 

equation and the observation state equation can be generally represented as: 
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where 1, −Φ tt and tB are known functions of time. The noise term tu is a random 

process with specified mean and covariance, i.e., 
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Similarly, the measurement noise term tε is statistically described as: 
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The following Extended Kalman Filter is based on these basic equations and 

assumptions [Kalman, 1960; Kalman & Bucy, 1961]. 

 

2.3.2 The Extended Kalman Filter 

 

The major difference between the traditional Kalman algorithm and the Extended 

Kalman filter lies in the fact that the latter does not keep the reference trajectory 

constant, but updates it based on the new estimate of x  [Minkler, 1993]: 

 

Given the following parametres: 

• An a priori estimate of x, 1ˆ −tx ; 

• The associated covariance matrix for 1ˆ −tx , 1−tP
)

; 

• Observation tz  at time t with associated observational error covariance 

matrix tR . 

If the process noise tu  is not considered, the extended sequential computational 

algorithm for the optimal estimate of x at any time t is here summarized. Integrate or 

propagate numerically from 1−t  to t: 

1. Giving the following parametres: 
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2. Propagate (time update): 
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3. Compute the linearized measurements: 



 24 

),~( tttt xGzY −=       (2.7) 

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
=

t

t
t

tG
x
x

H ~
),~(

      (2.8) 

4. Compute the measurement updates: 
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2.3.3 Process Noise and Measurement Noise 

 

To observe unmodelled motion, we model the time-varying satellite force as the sum 

of a deterministic component (our standard dynamic model) and a stochastic 

component. The latter is often called a process noise model. Augmenting a Kalman 

filter with a process noise model is a way of telling the filter that the state transition 

information in 1, −Φ tt  is incomplete—that there is another component that the filter 

cannot predict, but that it can try to observe in the data and estimate at each time step 

[Yunck, 1996]. 

 

In the context of orbit determination this means that at each time step, in addition to 

applying the standard dynamic updates, the filter will examine the discrepancy 

between the dynamic state estimate and the apparent state as indicated geometrically 

by the measurements. From that discrepancy it will estimate a local correction to the 

dynamic model, valid only over the update interval kk tt ~1− . When added to the 

dynamic model that correction will reduce the disagreement between the 

observations and the solution trajectory at time it . As it proceeds through the data, 

the filter will generate a sequence of local force model corrections, one at each 

update time, bringing the solution trajectory into better agreement with the 

observations [Feng, 1998]. That may be good or bad, depending on the quality of the 

observations and the accuracy of the models. We must, therefore, take care to hinder 

the local corrections from “chasing after” bad measurements.  In other words, we 

must consider the effects of the measurement outliers. 
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Because the kinematic correction is geometric, it is vulnerable to weak geometry. 

Momentary data outages or large position dilution of precision (PDOPs) will cause 

the error to grow or the solution to fail. The kinematic solution, moreover, makes no 

use of dynamic information—it is an empirical result constructed from the 

measurements. Often, however, dynamic information is at hand which, if properly 

treated, can improve the result. When geometry weakens or fails, dynamic 

information can then “carry” the solution with little loss of accuracy. 

 

In current practice, the strategy is to achieve a balance of dynamic and geometric 

information in the orbit solution by imposing a judicious constraint on the process 

noise parametres. In an optimal solution (under the assumption of a Gauss-Markov 

process noise model), the time constant will reflect the actual correlation time of 

dynamic model errors, and the steady-state variance, the actual error in the dynamic 

model. The geometric corrections will not be free to “follow” the measurements 

wherever they lead, but will be bound by the constraint to the dynamic model. The 

relative weight will, in fact, shift back and forth between dynamic and geometric 

information as the observing strength varies. When geometry is weak, the process 

noise constraint will hold the correction close to the dynamic solution; if there are no 

observations at all, no correction can be computed and the dynamic solution is 

produced. This optimised technique is known as reduced dynamic orbit 

determination. 

 

In the dynamic solution, random error is minimized (because the fewest parametres 

are adjusted), while dynamic error is fully expressed. This is reversed in the 

kinematic solution as many parametres are adjusted, amplifying the effect of data 

noise while absorbing dynamic error. The reduced dynamic solution seeks the 

optimal balance to minimize overall errors. 

 

This raises the question of how we choose the process noise weighting. Often there 

is some prior knowledge of the quality of the force models in use and the consequent 

position error expected. Computer simulations or covariance analysis can then 

suggest a reasonable a priori weighting. When real data become available, a variety 

of strategies for tuning the reduced dynamic constraints become possible. One 

approach is to observe the magnitude of the process noise corrections; if they 
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approach the constraints, the constraints should be relaxed; if they fall well short, 

then the constraints can be tightened. Another technique is to compare orbit solutions 

on short overlapping segments and tune the constraints to minimize the discrepancy. 

 

2.3.4 Discussion 

 

Many available onboard orbit determination systems show that positional accuracy 

of metres to tens of metres can be achieved, with a convergence time of around 

several hours. This is satisfactory for most applications. One of the difficulties of the 

extended sequential algorithm is that the reference (nominal) trajectory integration 

(propagation) needs to be restarted at every step. On the other hand, the reference 

trajectory update might still lead to divergence. This is especially true if the update 

of the nominal trajectory is performed from the beginning using estimates of tx  that 

might still be far from the true state. This algorithm, as was the case with the 

previous sequential algorithm, has the problem of divergence caused by the 

asymptotically approach to zero of the covariance matrix [Van Dierendonck, 1992] 

 

2.4 Phase-connected Kinematic Filter 
 

Alternatively, a complete geometric approach for onboard orbit determination has 

been devised [Bisnath & Langleg, 2001]. It does not use any dynamic model but 

requires both code and phase measurements. The strategy relies on combining the 

time-continuous measurement strength of the pseudo-range and carrier-phase 

observables. 

 

2.4.1 Phase-connected Point Positioning Filter 

 

The use of only GPS measurements for satellite positioning can be achieved in a 

number of different ways ranging from pseudo-range point positioning to some form 

of combined pseudo-range and carrier-phase positioning. The latter approach is used 

in this strategy and its basic form can be attributed to the seminal work of Hatch 

[1982]. The crux of carrier and pseudo-range combination is the use of averaged 

noisy code-phase range measurements to estimate the ambiguity term in the precise 
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carrier-phase range measurements. The longer the pseudo-range averaging, the better 

the carrier-phase ambiguity estimate. 

 

The carrier/pseudo-range averaging periods are typically short in spaceborne 

applications due to the relatively fast motion of the LEO, necessitating frequent 

changing of GPS satellites being tracked by the receiver. Such a situation does not 

allow for the highest precision of the technique to be attained. However by 

performing the averaging in the position rather than the range domain, previous 

position solutions can be used for estimating present and future position solutions. In 

essence, the pseudo-ranges provide coarse position estimates and the relative carrier-

phase measurements provide precise positioning change estimates. The position-

change estimates are used to map all of the position estimates to one epoch for 

averaging. 

 

2.4.2 Filter Models and Solution 

 

The liberalized filter observation model in matrix form is: 
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where tP and 0
tP  are the pseudo-range measurement and computed value, 

respectively; tδφ and 0
tδφ  are the time-differenced carrier-phase measurement and 

predicted value, respectively; 1−txδ  and txδ are the estimated corrections to the LEO 

receiver position and clock at epochs t-1 and t, respectively; 1−tH  and tH are the 

measurement partial derivatives with respect to the LEO receiver position and clock 

estimates for epochs t-1 and t, respectively; t
pε  and 1, −tt

φε  are the measurement 

errors associated with tP  and tδφ , respectively; and PC  and φC are the covariance 

matrices for tP  and tδφ , respectively.  

 

The best solution for Equation (2.12), in a least squares sense, is: 
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where xxx δ+= 0
) ; pw and Φw are the misclose vectors for the pseudo-ranges and 

time-differenced carrier-phases, respectively; and 1
1

−

−
txC is the LEO receiver position 

and clock covariance based on the last epoch’s observations. 

 

The position estimate at the previous epoch, t-1, is used as an approximate value to 

estimate the position at epoch t and so on for the moving LEO. Equation (2.13) 

represents a kinematic, sequential least squares filter. This type of filter is a subset of 

the general Kalman filter.  

 

2.4.3 Discussion 

 

Theoretically this geometric method utilizes the full potential of the GPS 

measurements, and makes use of the readily available GPS data products. The 

dynamics-free nature makes it a very simple and efficient orbit determination 

method for LEO. On the other hand, it demands good GPS geometry as well as 

sufficient phase connection arc length. 

 

Some ground-based simulation results have been reported. The results suggest an 

overall 100cm 3D RMS accuracy for T/P [Bisnoth & Langley, 2001], and for periods 

of good geometry, the accuracy can be improved considerably to the 30cm level. 

Report [Bisnath & Langley, 2002] also suggests that 40cm in radial component and 

30cm in each of the along-track and cross-track components have been achieved for 

CHAMP. But these results were obtained from IGS orbital products and precise GPS 

satellite information, such as the GPS satellite phase wind-up modelling, sub-diurnal 

variations in the Earth rotation, etc. It is estimated that metre level accuracy could be 

achievable if using the broadcast ephemerides and less complex satellite model 

information. 
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2.5 Onboard Simplified General Perturbations- SGP4 Filter 
 

In a typical onboard Extended Kalman Filter the disadvantage of numerical orbit 

prediction may be overcome by the use of analytical orbit models, which can be 

evaluated at arbitrary times and do not require a step-wise integration of the 

trajectory. This allows offline predictions over mid- and long-term time scales 

(multiple revolutions to multiple days) at the expense of decreased short-term (<1 

revolution) accuracy. The Simplified General Perturbations- SGP4 model [Hoots & 

Rochrich, 1980] is a common choice because of its widespread application for near-

circular, low altitude satellites, and its high communality with existing ground 

equipment and commercial off-the-shelf software products. The onboard SGP4 filter 

is formulated for the direct estimation of the SGP4 mean orbital parametres from the 

onboard GPS measurements. 

 

2.5.1 SGP4 Model Overview 

 

Developed in 1970 by NORAD, the SGP4 (Simplified General Perturbations) model 

is based on the analytical theory of Brouwer and accounts for the Earth gravitational 

field through zonal terms 432 ,, JJJ and the atmospheric drag through a power 

density function assuming a non-rotating spherical atmosphere. Short periodic 

perturbations, however, are only modelled to first order ( 2J ). The SGP4 model, 

which is denoted here by the symbol S in the sequel, relates the spacecraft state 

vector as: 
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at time t to a set of mean elements: 

 ),,,,,( 0000000 Miea ωα Ω=       (2.15)  

at epoch 0t and a ballistic coefficient mACB D /= describing the effective satellite 

area-to-mass ratio. The SGP4 orbit model comprises the computation of secular and 

long-periodic perturbations of the orbital elements from which a preliminary state 

vector is computed. Upon adding the short-periodic perturbations, an approximate 

osculating state vector is obtained. In total the SGP4 model is considered a 6-
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dimensional, continuous and differentiable function of time, dependant on seven 

dynamic parameters. A detailed description of the SGP4 model is given in [Hoots & 

Rochrich, 1980].  

 

2.5.2 Osculating to Mean Elements Conversion 

 

A different parametreization of the SGP4 model is required for the adjustment of 

orbital parametres from observations. The so-called ‘mean SGP4 state vector 

concept’ can be expressed as the mean state vector at epoch 0t  [Herman, 1998]: 

 )( 00 αK=y         (2.16) 

where 0α  denotes the SGP4 mean elements at the same epoch. The expression: 

 )()),(( 0
1 xsyKS tt By =≈ −       (2.17) 

which relates the osculating state vector for a given time t to the combined parametre 

vector ),( 0 By=x  via the composite function s. Compared to the original 

formulation, s is non-singular even for circular or equatorial orbits and the partial 

derivatives of s with respect to the orbital parametres are well defined throughout the 

phase space of interest. 

For epoch 0t  and a given ballistic coefficient B , we can get: 
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This provides a useful point-to-point conversion from osculating to mean state 

vectors. 

 

2.5.3 SGP4 Elements Estimation from GPS Measurements Using Kalman Filter 

 

A classical Kalman filter, estimating the instantaneous state vector, is likewise 

undesirable due to the non-trivial mapping of osculating to mean orbit information. 

As a solution to this problem, an extended epoch state filter is considered, which 

processes all the measurements sequentially (and only once) to update an a priori 

value of the mean state vector at epoch, as well as its covariance. In contrast to the 

classical Kalman filter the epoch state filter does not include a state update, since 

propagation of the estimated state to the measurement epoch is not required. Instead 

it consists of a measurement update only, which comprises the computation of the 
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Kalman Gain, correction of the current parametre estimate and the computation of 

the a posteriori covariance. The linearized measurements model function can be 

expressed as: 

 ),ˆ()()( 3333 ttttt xs01Θxh ××= ××      (2.19) 

which is evaluated with the latest estimate 1ˆ −tx of the parametre vector. Here 

))(( tzt GHARΘ = denotes the Earth rotation matrix that describes the 

transformation from the equator and equinox of date to the Earth-fixed Greenwich 

meridian system. Likewise, the partial derivatives 11 ˆ/ −− ∂∂= ttt xhH  of the computed 

measurements at time t are computed with respect to the estimated parametre vector 

1ˆ −tx as obtained from all previous measurements. This is a standard extended Kalman 

filter, and the resulting filter equations are given by Equation (2.9) ~ (2.11). 

 

2.5.4 Discussion 

 

Compared to classical Kalman filters using numerical orbit models, this method can 

cope with low measurement rates and data gaps of up to several days in size. Its 

built-in capability to adjust a free drag parametre as well as the analytical 

formulation of the orbit model facilitates mid-term forecasts and allows the 

implementation of onboard algorithms for the prediction of station contact or eclipse 

times. On the other hand, due to the limit of the SGP4 model itself, the short-term 

orbit solution accuracy is far less than the numerical method. It is around 1000 

metres. 

 

PoSAT-1 mission used such a SGP4 filter and generated an approximate 1.5km orbit 

accuracy using only one orbit data per day [Montenbruck & Gill, 1996]. Some 

simulation experiments also have been carried out using GPS/MET and MOMSNAV 

(MIR) mission data, and also around 1km positional accuracy was achieved. The 

detailed result of SGP4 filter from the BIRD mission haven’t been published, but the 

same results also were achieved through their simulation studies. 
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2.6 Proposed Onboard Orbit Determination Methods  
 

2.6.1 Motivations 

 

The purpose of this research is to develop an orbit determination system providing 

metres to sub-metre level positional accuracy and mm/s velocity accuracy in near-

real time to real time (normally means minutes to tens minutes after last GPS 

observation); while the computional burden is kept within the memory and 

computing capability limits for most LEO satellites.  For the existing solutions and 

methods, we have the following observations: 

 

• First of all, onboard point positioning solution can provide 10~20 metres 

positional accuracy, but the solution is vulnerable and it cannot provide 

continuous or predicted orbit information, thus the point positioning solution 

is not suitable for many missions. 

 

• Secondly, a sequential Extended Kalman filter-based dynamical orbit 

determination process generates estimates of the instantaneous spacecraft 

state vector at discrete time steps that usually coincide with the arrival of new 

measurements. Such OD system is a quite simple filtering process, depending 

on the underlying dynamical model, and generates better results than the 

navigation solution. But the Kalman filter is really tricky one, with the 

stability being the most important issue. To achieve a satisfied result, process 

noise should be considered in the filter. The dedicated treatment of the 

process noise and the measurement weight scheme are the key issues for a 

stable Kalman filter, and this treatment is a challenge most of the time. 

Another problem with the Kalman filter is the convergence time, as it usually 

takes several hours to converge, which is not a problem for continuous 

operational GPS, but problems arises when the intermittent operation model 

is used. That means the Kalman filter will need initialization and re-

convergence. 
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• The phase-connected kinematic method is suitable for onboard processing 

because it doesn’t require any dynamic information. But it requires good 

pseudo-range measurement quality and good GPS satellite geometry, which 

is not always available.  

 

• Furthermore, the SGP4 filter is not suitable for our purpose simply because 

of its limited accuracy. It could be useful as a long-term moderate accuracy 

orbit predictor, but not for a high accuracy real time onboard filter spacecraft. 

 

Based on these considerations, research challenges to implement a near-real time 

onboard orbit determination system have been identified. These can be summarized 

as: 

• how to increase the OD accuracy while maintaining the onboard 

computing burden to an acceptable level; 

• how to increase the stability of the onboard filter; and 

• how to satisfy the near-real time (even real time) requirements. 

 

2.6.2 Summary of the Proposed Methods 

 

To address these technical challenges a near-real time orbit determination method is 

proposed in this dissertation. The method has the following characteristics: 

• Using the orbital model simplification techniques to be discussed in Chapter 

3, and the Earth gravity approximation method to be tested in Chapter 4. 

These simplifications reduce the computational burden dramatically and 

retain the high accuracy of the complex models. 

• Using a sequential carrier-phase smoothing method to improve the code 

measurement quality can greatly increase the orbit determination accuracy. 

Furthermore, a sliding-window processing method is proposed to reduce the 

onboard memory usage for the measurements as well. 

• Using a stable weighted least squares filter with short-arc length, from 15 

minutes to 2 hours, with a sliding-window method, the filter solution is 

available with 5~30 minutes latency  
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• Optionally the method has the ability to predict the orbit for 1 hour, and meet 

the requirements of many real time applications. 

 

Table 2.3 gives a summary of proposed techniques and objectives. We discuss these 

techniques in the following chapters. 

 

Table 2.3 Summary of research efforts toward a near-real time onboard orbit 

determination system. 
 Techniques Objectives 
Orbit dynamical 
models 

Simplifications: 
• Gravity model approximation 
• Lunar and solar ephemerides tables  
• Celestial parametres interpolation 
• Atmospheric models 
• Integral equations 

Reduce the onboard 
computational burden 
and retain the full 
model accuracy. 

Linear models: 
Observation and 
state transition 
equation 

• Closed form state derivations  
• Closed form GPS single point positioning 

Reduce the 
computational burden 
by simplifying the 
state transition matrix 
computing, and give 
an initial orbit 
estimation without 
initial input. 

Observations 
improvement 

• Effective outlier detection to control quality 
of code data 

• Phase smoothing for improved measurement 
accuracy  

• Stochastic models 

Increase the GPS code 
measurement quality 
and reduce the onboard 
memory usage. 

Orbit Estimation • Short-arc orbit estimation  
• Sliding-window OD  
 

Achieve metre level 
orbit determination 
accuracy with 20~40 
minutes latency; 

Software 
development 

• A comprehensive library of data processing 
routines in the area of mathematics, 
astronomy, geodesy,  GPS and estimation; 

• Independent software modules of orbit 
integration, GPS data editing, GPS 
ephemerides calculation, orbit filtering, 
smoothing, etc. 

Establish an orbit 
determination platform 
to facilitate this 
research and FedSat 
OD projects. 
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Chapter 3 

Simplifications of Dynamical Models for Low 

Earth Orbiters  

 

 

 

In this chapter, a detailed description of the orbit dynamical models is given to 

provide a basis for the proposed method, based on precise dynamical models and 

precise orbit numerical integration approaches. Due to the limitation of power and 

computing capacity onboard a spacecraft, full accuracy dynamical models are not 

realistic, especially on small satellites, hence different schemes for orbit model 

simplifications are examined and new simplification methods are proposed. 

 

3.1 Orbit Dynamic Models for LEO 
 

Mathematical models employed to describe the motion of a LEO satellite can be 

divided into three categories:  

• the gravitational forces acting on the spacecraft consist of the Earth’s central 

body gravity, non-spherical geopotential, third-body perturbations; and 

• the non-gravitational forces consist of drag, solar radiation pressure, Earth 

radiation pressure, and thermal radiation acceleration; and  

• un-modelled or mis-modelled forces, such as solid earth tides, ocean tides, 

relativistic effects, Earth rotational deformation, etc. 

 

Therefore, the equations of motion of a near-Earth satellite can be described in an 

inertial reference frame as: 

empngg aaar ++=&&        (3.1) 

where r&&  is the position vector of the centre of mass of the satellite, ga  is the sum of 

the gravitational forces acting on the satellite, nga  is the sum of the non-gravitational 
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forces acting on the surfaces of the satellite, and empa  are the un-modelled forces 

which act on the satellite due to either a functionally incorrect or incomplete 

description of the various forces acting on the spacecraft, or inaccurate values for the 

constant parametres which appear in the force model. 

 

In the following section the basic time and coordinate systems used in the orbit 

determination are first briefly described, followed by a detailed description of the 

force models. 

 

3.1.1 Time and Coordinate Systems 

 
Time System 

 
An orbit integration problem involves several time systems. From the measurement 

systems, satellite laser ranging measurements are usually time-tagged in UTC 

(Coordinated Universal Time) and GPS measurements are time-tagged in GPS 

System Time (referred to here as GPST). Although the second length of both UTC 

and GPST are based on atomic time standards, UTC is loosely tied to the rotation of 

the Earth through the application of “leap seconds” to keep UT1 and UTC within a 

second. GPST is continuous to avoid complications associated with a discontinuous 

time scale [Milliken & Zoller, 1978]. Leap seconds are introduced on January 1 or 

July 1, as required. The relation between GPST and UTC is: 

GPST = UTC + n       (3.2) 

where n is the number of leap seconds since January 6, 1980. For example, the 

relation between UTC and GPS-ST in mid-July 1999 was GPST = UTC + 13 

seconds. The independent variable of the near-Earth satellite equations of motion 

(Equation (3.1)) is typically TDT (Terrestrial Dynamical Time), which is an abstract, 

uniform time scale implicitly defined by the equations of motion. This time scale is 

related to the TAI (International Atomic Time) by the relation: 

TDT = TAI + 32.184s       (3.3) 

The planetary ephemerides are usually given in TDB (Barycentric Dynamical Time) 

scale, which is also an abstract, uniform time scale used as the independent variable 

for the ephemerides of the Moon, Sun, and planets. The transformation from TDB to 

TDT with sufficient accuracy for most applications has been given by Moyer [1981]. 
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For a near-Earth missions like T/P, it is unnecessary to distinguish between TDT and 

TDB. New time systems are under discussion by the International Astronomical 

Union. This document will be updated with these time systems, as appropriate. 

 

Coordinate System 

 
The inertial reference system adopted for Equation (3.1) for the dynamic model is 

the ICRF geocentric inertial coordinate system, which is defined by the mean 

equator and vernal equinox at Julian epoch 2000.0. The Jet Propulsion Laboratory 

(JPL) DE-405 planetary ephemeris [Standish, 1998], which is based on the ICRF 

inertial coordinate system, has been adopted for the positions and velocities of the 

planets with the coordinate transformation from barycentric inertial to geocentric 

inertial. 

 

Tracking station coordinates, atmospheric drag perturbations, and gravitational 

perturbations are usually expressed in the Earth-fixed, geocentric, rotating system, 

which can be transformed into the ICRF reference frame by considering the 

precession and nutation of the Earth, its polar motion, and the UT1 transformation, 

The 1976 International Astronomical Union (IAU) precession [Lieske, et al., 1977, 

Lieske, 1979] and the 1980 IAU nutation formula [Wahr, 1981; Seidelmann, 1982] 

with the correction derived from VLBI analysis [Herring, et al., 1991] will be used 

as the model of precession and nutation of the Earth. Polar motion and UT1-TAI 

variations were derived from Lageos (Laser Geodynamics Satellite) laser ranging 

analysis [Tapley, et al., 1985; Schutz, et al., 1988]. 

 

3.1.2 Gravitational Forces 

 
The gravitational forces can be expressed as: 

ngeog aaa +=         (3.4) 

where  

geoa   = perturbations due to the geopotential of the Earth 

na   = perturbations due to the Sun, Moon and planets  
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Geopotential 

 
The perturbing forces of the satellite due to the gravitational attraction of the Earth 

can be expressed as the gradient of the potential U, which satisfies the Laplace 

equation 02 =∇ U : 

geos a)(UU =∇=∇        (3.5) 

where sU  is the potential due to the solid-body mass distribution. 

 

The perturbing potential function for the solid-body mass distribution of the Earth 

sU  is generally expressed in terms of a spherical harmonic expansion, referred as 

the geopotential, in a body-fixed reference frame [Kaula, 1966; Heiskanen & Moritz, 

1967]: 
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where 

eGM    = the gravitational constant of the Earth 

ea    = the mean equatorial radius of the Earth 

lmlm SC ,   = normalized spherical harmonic coefficients of degree l and 

order m 

)(sinφlmP   = the normalized associated Legendre function of degree l and 

order m  

λφ,,r   = radial distance from the centre of mass of the Earth, the 

geocentric latitude and the longitude of the satellite 

To ensure that the origin of spherical coordinates coincides with the centre of mass 

of the Earth, we define 0111110 === SCC . 

 

N-Body Perturbation 

 
The gravitational perturbations of the Sun, Moon and planets can be modelled with 

sufficient accuracy using point mass approximations. In the geocentric inertial 

coordinate system, the accelerations can be expressed as: 
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where  

G  = the universal gravitational constant 

iM  = mass of the i-th perturbing body 

 ir   = position vector of the i-th perturbing body in geocentric inertial 

coordinates 

i∆  = position vector of the i-th perturbing body with respect to the 

satellite 

The values of ir  and iM can be obtained from the Jet Propulsion Laboratory 

Development Ephemeris-405 (JPL DE-405) [Standish, 1998], 

 

3.1.3 Non-gravitational Forces 

 

The non-gravitational forces acting on the satellite can be expressed as: 

solardragng aaa +=         (3.8) 

where 

draga   = perturbations due to atmospheric drag 

solara   = perturbations due to the solar radiation pressure 

Since the surface forces depend on the shape and orientation of the satellite, the 

models are satellite-dependent. In this section, however, general models are 

described. 

 

Atmospheric Drag 

 
A near-Earth satellite of arbitrary shape moving with some velocity V  in an 

atmosphere of density ρ  will experience both lift and drag forces. The lift forces are 

small compared to the drag forces, which can be modelled as [Schutz & Tapley, 

1980]: 

rr
d V
m

AC
Vadrag )(

2
1 ρ−=        (3.9) 

where  
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 ρ  = the atmospheric density 

 rV  = the satellite velocity relative to the atmosphere 

rV   = the magnitude of rV  

m = mass of the satellite 

dC  = the drag coefficient for the satellite 

A = the cross-sectional area of the main body perpendicular to satellite 

velocity r&  

The parametre mACd /  is sometimes referred to as the ballistic coefficient. When 

more detailed modelling is needed, the drag force on any specific spacecraft surface, 

for example, the solar panel, can be modelled as: 

rr
pdp V
m

AC
Vapaneld )

cos
(

2
1 γ

ρ−=       (3.10) 

where  

dpC   = the drag coefficient for the solar panel 

pA   = the solar panel’s area 

γ  = the angle between the solar panel surface normal unit vector, 

n̂  and satellite velocity vector, r&  

γcospA  = the effective solar panel cross-sectional area perpendicular 

to r&  

 

There are a number of empirical atmospheric density models used for computing the 

atmospheric density. These include the Jacchia 71 [Jacchia, 1971], Jacchia 77 

[Jacchia, 1977], the Drag Temperature Model (DTM) [Barlier, et al., 1977], DTM-

2000 [Bruinsma & Thvillier, 2000], MSIS-90 and NRLMSISE-00 [Hedin, 1996]. 

The density computed by using any of these models could be in error anywhere from 

10% to over 200% depending on solar activity [Shum, et al., 1986]. To account for 

the deviations in the computed values of density from the true density, the computed 

values of density ρ  can be modified during the orbit determination process. 
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Solar Radiation Pressure 

 
The Sun emits a nearly constant amount of photons per unit of time. At a mean 

distance of 1 A.U. from the Sun this radiation pressure is characterized as a 

momentum flux having an average value of 26 /1056.4 mN−× . The direct solar 

radiation pressure from the Sun on a satellite is modelled as [Tapley & Ries, 1987] 

uasolar ˆ))(1( νη
m
AP +−=       (3.11) 

where  

P = the momentum flux due to the Sun 

η  = reflectivity coefficient of the satellite 

A = the cross-sectional area of the satellite normal to the Sun 

m = mass of the satellite 

ν  = the eclipse factor (ν  = 0 if the satellite is in full shadow, 1−=ν  if 

the satellite is in full Sun, and 0<ν <1 if the satellites is in partial 

shadow) 

u)   = the unit vector pointing from the satellite to the Sun 

Similarly, the solar radiation pressure perturbation on an individual satellite surface, 

such as the satellite’s solar panel, can be modelled as 
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( nuapanels p
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P ην
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+−= )       (3.12) 

where  

 pA   = the solar panel area 

pη   = the surface normal unit vector of the solar panel 

γ  = the angle between the solar panel surface normal unit vector 

n)  and satellite-Sun unit vector, u)  

γcospA  = the effective solar panel cross sectional area perpendicular 

to u)  

 

The reflectivity coefficient η  represents the averaged effect over the whole satellite 

rather than the actual surface reflectivity. Conical or cylindrical shadow models for 

the Earth and the lunar shadow are used to determine the eclipse factorν . Since there 
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are discontinuities in the solar radiation perturbation across the shadow boundary, 

numerical integration errors occur for satellites which are in the shadowing region.  

 

3.1.4 Other Perturbation Forces 

 

Other non-gravitational perturbation forces, such as Earth solid tide, ocean tide, 

Earth rotation tide, relativistic effect, Earth radiation pressure, thermal radiation 

perturbations, yaw (steering) effect, etc., are too small to be considered here. Though 

these forces should be considered in precise orbit determination, they can be 

neglected in our research. 

 

3.2 Simplification Schemes for Onboard Calculations 
 

It is generally the case that more precise orbit state knowledge requires more 

complex dynamical models. It is especially true for the LEOs, which are heavily 

affected by the Earth’s gravity field and atmospheric drag. On the other hand, the 

computing capacity onboard is always restricted for small to middle-sized spacecraft 

in these two respects [Chiaradia, 2002]: 

• Heavy computing load always lead to greater power consumption, but 

limitations on power supply are always major problems for any satellite. The 

energy source comes from solar batteries, but they are limited by the solar 

panel size and battery. 

• The cost of space-enabled hardware is very high for small satellites and the 

hardware requires strong resistance to radiation, temperature and concussion 

introduced by the violent space environment. 

 

The onboard OD computing platform varies from mission to mission, but many 

aspects affect the computing performance. As far as the onboard OD computing 

burden is concerned there are two issues to address: CPU load and memory usage. 

The requirement of both will impact on the total computional burden and power 

consumption. CPU is the kernel part of the onboard computing facilities and it 

determines the processing speed. Its performance is influenced by the clock 

frequency, internal cache and memory bus bandwidth. For an onboard processing 
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unit, memory can be divided into Random Access Memory (RAM) and Read Only 

Memory (ROM). RAM operates at high speed and mainly provides the storage for 

the onboard operating system and OD programs, but it functions only while the 

system power is on, and thus cannot be used to store data. On the other hand, ROM 

keeps alive for a much longer time with little battery power support, and thus can be 

used to store static data. The performance of RAM and ROM can be evaluated by 

the capacity and read/write speed. We address the detailed computional burden in 

terms of CPU load (computing speed) and memory usage.  

 

The onboard OD system comprises of several modules: data acquisition, GPS 

ephemerides calculation, orbit propagation and filtering processing.  

 

3.2.1 Orbit Integration Computional Burden 

 

Given the initial condition and a specific orbit dynamical model, the orbit 

propagation module calculates the satellite state vector and partials at a given time 

using a numerical stepwise integrator. From the software point of view, the 

computing load of orbit integration comes from two major computional tasks: 

• Before the actual orbit integration start, some data must be made ready for 

use. This includes the Earth gravity harmonic coefficients, Earth rotation 

parametres, planetary ephemerides and geophysical data (such as F10.7 solar 

flux and geomagnetic index for atmospheric density calculation). All data are 

normally stored in onboard ROM and are fetched into RAM as soon as the 

OD program starts. Except for the I/O process, the program also does some 

initializations tasks on these data so that they can be used in subsequent orbit 

propagation processes. 

• The second task is the orbit integration itself. With state vector and 

parametres known at 0t , it calculates the state vector and partials step-by-step 

from 1−it  to it , for i = 1,…,n. There is a module to calculate the perturbation 

accelerations and partials, which is actually where the heavy computing takes 

place. It calculates the orbit perturbation accelerations and partials based on 

the input parametres and the given orbital dynamical model. The computing 

burden depends on how many times this module is called. Because we use k-
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th order Runge-Kutta integrator, there are k steps for every 1−it  to it  

propagation process. So there are kn× calls to the derivation calculation 

function for the whole propagation. 

 

We refer to the first part as the initialization module, and the second part as the 

derivative computing module. Figure 3.1a shows the detailed flow chart of orbit 

propagation. Figure 3.1b illustrates the derivation computing details. 

           
Figure 3.1a Computional flow chart of orbit integration; Figure 3.1b Calculation 

flow chart of derivatives computing module.  

 

To understand the detailed computational burden, an orbit integration experiment 

was designed. Both the computing time and memory usage were determined by 

hundreds or thousands of repeated calls to these two modules; 200 calls and 20000 

calls were used for the initialization module and derivation computing module, 

respectively. Though we cannot get 100 percent accurate figures from this test, we 

are more concerned with the relative computing burden distribution. The hardware 
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Polar motion Data 
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Integrator, 
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platform used was a PIII-1000Hz / 256M memory desktop computer, and the 

software is the QUT CRCSS FODT package. Table 3.1 gives the memory usage test 

results. This data was supposed to be uploaded to satellite once a month. Figure 3.2 

and 3.3 gives the computing time distribution results for initialization and derivative 

computing modules, respectively. 

 

Table 3.1 Storage requirement of orbit integration. 

Data RAM ROM 
Polar Motion  64 bytes per 5 days 

Usage: 10 days = 128 bytes 
One month storage (text format) 
Usage = 456 bytes 

Atmospheric Density 
Model  

32 bytes per day 
Usage: 1 day = 32 bytes 

One month storage (text format) 
Usage = 2,190 bytes 

Planet Ephemerides  Usage: 16,352 bytes One year storage (binary format) 
Usage = 97,894 bytes 

Earth Gravity Model Usage = 21,586 bytes Usage = 88,935 bytes 
Total: Usage = 38,098 bytes  

= 37 Kbytes 
Usage = 189,475 bytes  
= 185 Kbytes 

 Data description 
Polar Motion Using 5 days data from IERS bulletin B, which has 30 days prediction. 

Atmospheric Density 
Model 

Using solar flux and the geomagnetic data, it is a daily complied data set. 

The atmospheric density model used is the MSIS86. 

Planet Ephemerides Using DE405 data from JPL, data can be truncated to the desired period. 
Earth Gravity 
Model 

Using 70 ×70 JGM-3 model, and up to 120 order and degree of Legendre 
polynominal coefficients. 

 

9%

36%

2%

53%

Polar Motion MSIS86 Atmospheric Density
DE405 Gravity (70x70)

 
Figure 3.2 Computional time distribution of the initialization module. 
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21%
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10%
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Earth Gravity (70x70)

MSIS86 Atmospheric
Drag

Coordinate
Transformation

Solar Pressure, N-body,
Tide and Their Partial
Derivatives
Other Perturbation
Forces

 
Figure 3.3 Computional time distribution for the partial derivatives computing 

modules. 

 

From these figures it can be seem that the Earth gravity, atmosphere density and 

planetary ephemerides computing task take around 80% ~ 90% of computing time. 

Compared to the derivation computing module, the computing burden of the 

initialization module can be ignored. It is clear that 42% of the calculation burden 

comes from the Earth geopotential computations, because of the recursive nature of 

the spherical harmonic computation. The computing burden increases dramatically 

with the higher order & degree of spherical harmonic expression, so we can use a 

lower order gravity model, such as 10×10 ~ 30×30. Another method, which will be 

discussed in Chapter 4, changes the traditional recursive computing method, thus 

leading to a reduction in the computing burden. Furthermore, around 40% of 

computing burden comes from atmospheric density model and planet ephemerides 

computation, as can be seen in both initialization and propagation processes. For 

memory usage, around 200 Kbytes ROM is necessary for a one month mission, 

assuming a 70× 70 Earth gravity model was used. The RAM usage varies within 

several Kbytes, depending on the software structure, memory allocation strategy and 

internal variable type.  
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3.2.2 Simplification Schemes 

 

Based on the discussion in the previous sections, we have the following 

simplification schemes: 

• Nearly 60% memory usage and 40% computing time in the orbit propagation 

are due to the Earth gravitational calculation. This includes the first and 

second-order partial calculation and the Legender polynominal coefficient 

propagation. These calculations are all recursive in nature. Different “order & 

degree” schemes can be tested against accuracy requirement. From previous 

experiment that 1010 ×  ~ 2020 ×  is appropriate for onboard orbit 

determination, the computation burden decreases about 300% from the 

7070 ×  model but only with 30% accuracy degradation [Zhou & Feng, 

2002a].  

• JPL DE405 ephemerides takes around 50% memory usage and about 20% 

computing time. Unlike the gravitation calculation, this part can be highly 

simplified because the accuracy of planetary ephemeris is much less 

important, as the order of magnitude of the acceleration is 

around 296 /10~10 sm−− . Instead of using the DE405 interpolated 

ephemerides, an analytical sun & moon position algorithm will be tested.  

• It is also found that the coordinate transformation process takes around 10% 

computing time because nutation, precession, polar motion, and planetary 

ephemerides are calculated for every integration step in real time. To 

minimize the calculation burden, we have used an interpolation method. In 

the initialization stage all of these ephemerides and parametres in a grid are 

calculated and stored, and then we can recover these parametres using 

different interpolation methods. In this way, around 10% computing burden 

can be relieved with only very small memory storage increase.  

• Drag force takes 20% of the computing time. Although atmospheric drag is 

important for all LEO satellites, the calculation of a precise atmospheric 

density model is relatively heavy for an onboard platform. In addition to the 

calculation complexity, another problem is to get the real time Sun flux and 

geomagnetic data onboard. Instead of using an empirical density model, a 
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simplified upper atmospheric density model will be tested. This will greatly 

reduce the computing burden. 

• The computing burden caused by the state transition matrix integration is 

very high if the full orbital model is considered. But the precise knowledge of 

the transition matrix is not required because the integration arc onboard is 

only several hours in length. A simplified method is used. 

• Adaptive step size control in the orbit integrator may reduce some computing 

burden. In order to obtain a desired accuracy with minimum computational 

effort, the orbit integrator adjusts the time integration step size. The accuracy 

of the integration is compared to some desired accuracy and the step-size is 

increased or decreased, depending on whether the accuracy of integration is 

better or worse than the desired accuracy. 

 

3.3 Simplified Solar and Lunar Coordinates 
 

3.3.1 Introduction 

 

For orbit determination the N-body gravitational perturbation from the Sun, Moon 

and all planets should be considered. The JPL provides a series of solar system 

ephemerides in the form of Chebyshev approximations. The Development 

Ephemerides are publicly available and have emerged as a standard source for high 

precision planetary and lunar coordinates. Currently the DE200 and DE405 

ephemerides are most widely used for general applications. 

 

All ephemerides are based on a rigorous numerical intergration of the respective 

equations of motion. In addition to the point-mass interactions among the Moon, the 

planets and the Sun, the perturbations from selected asteroids are considered, as well 

as relativistic post-Newtonian corrections to the equations of motion. Furthermore, 

the lunisolar torques on the figure of the Earth and the Earth and Sun’s torques on 

the figure of the Moon are taken into account. The observational database for the 

development of DE405 comprised mainly optical transit measurements of the Sun 

and the planets since 1911, radar ranging to Mercury and Venus since 1964, tracking 

of deep space probes, planetary orbiters and landers since 1971, and lunar laser 
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ranging since 1970. Standard DE405 reading and interpolation methods are available 

from JPL. A small utility is also available to truncate the original data file to a 

shorter time span to minimize the file size. 

 

Though DE405 is a right choice for orbit determination the computing requirement 

are too high for onboard processing.  According to Newton’s law of gravity the 

acceleration of a satellite by a point mass M is given by Equation (3.7). For a LEO 

satellite, ),( ji r∆r << , the approximation can be made by 33
jr∆ = : 
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The order of magnitude of perturbation with respect to the Earth central body 

attraction can be expressed as: 
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For the Sun and Moon, and for the LEO satellite ( 5.1<ir ), we have: 
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For other planets, only acceleration from Jupiter is of the order of 213 /10 sm− . We 

only need to consider the acceleration from the Sun and the Moon for onboard orbit 

determination. 

 

3.3.2 Methodology 

 

Since the forces exerted by the Sun and the Moon are much smaller than the central 

attraction of the Earth, it is not necessary to know their coordinates to the highest 

precision when calculating the perturbing acceleration acting on a satellite. For many 

purposes it is even sufficient to use simple equations for the solar and lunar 

coordinates that are accurate to about 0.1% ~ 1% and follow from more advanced 

analytical theories for the motion of the Sun and the Moon [Van Flandern & 

Pulkkinen, 1979; Montenbruck, 1989, Montenbruck & Pfleger, 2000]. 

 

Geocentric solar coordinates can easily be obtained from the assumption of an 

unperturbed motion of the Earth around the Sun. Appropriate mean orbital elements, 
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which approximate the Sun’s elliptic orbit with respect to the Earth and the ecliptic 

for some decades around the year 2000, are given by [Montenbruck, 1989]: 

 a = 149,600,000km, e = 0.016709, i = 000.0o  

 9400.282o=+ωΩ ;   ,049.359995256.357 TΜ oo +=    (3.16) 

where 

 ( ) 0.36525/0.2451545−= JDT      (3.17) 

is the number of Julian centuries since 1.5 January 2000 (J2000), and JD is the Julian 

Date. The position coordinates may be found from these elements using the 

equations for Keplerian orbits that were derived in the previous chapter. Due to the 

small eccentricity and inclination, the use of some simple series expansions is, 

however, recommended to speed up the calculation without loss of accuracy. This 

results in the expressions: 
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for the Sun’s ecliptic longitude sλ and distance sr , whereas the ecliptic latitude 

sβ vanishes within an accuracy of 1′  [Montenbruck, 1989]. 

 

These values may be converted to Cartesian coordinates referring to the equator by 

applying an appropriate rotation: 
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Since 0=sβ , the expression sr  may further be simplified to give: 
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To be precise, the longitude sλ , the latitude sβ , and the position vector sr  in Equation 

(3.19) refer to the mean equinox and ecliptic of J2000 (EME2000). Precession, 

which is a result of perturbing forces of the Sun, Moon and planets, gives rise to a 

slow motion of both the ecliptic and the equinox. While the ecliptic changes its 

orientation by less than 1′  per century, the motion of the equinox is more 

pronounced, however, and amounts to 0503 ′′ per century. Referred to the mean 
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equinox of 1950, for example, the Sun’s longitude is smaller than the above value by 

about 25150 . In order to refer the coordinates to the equinox of some epoch eqxT  

(measured in centuries since the epoch 2000), one has to add a correction of 

eqxT3972.1o to the value of sλ given above. The ecliptic latitude need not be changed 

since it varies by less than one arc-minute within a full century. 

 

Series expansions similar to those for the Sun exist for the lunar coordinates as well. 

Due to the strong solar and terrestrial perturbations, a larger number of terms are, 

however, needed to describe the lunar motion in terms of the mean arguments of the 

lunar and solar orbit. The following relations allow the computation of lunar 

longitude and latitude with a typical accuracy of several arc-minutes and about 

500km in the lunar distance. The calculation of the perturbations is based on five 

fundamental arguments: the mean longitude 0L of the Moon, the Moon’s mean 

anomaly l, the Sun’s mean anomaly l′ , the mean angular distance of the Moon from 

the ascending node F, and the difference D between the mean longitudes of the Sun 

and the Moon. The longitude of the ascending node Ω  is not explicitly employed. It 

is obtained from the difference FLΩ −= 0 . 
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Using these values the Moon’s longitude with respect to the equinox and ecliptic of 

the year 2000 may be expressed as: 
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    (3.22) 

Here, the first two terms describe the motion in an ellipse of eccentricity e = 0.055, 

whereas the remaining terms denote the various perturbations. The lunar latitude is 

given by: 
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where the leading term is due to the inclination of the Moon’s orbit relative to the 

ecliptic, which amounts to approximately o1.5 . Finally the Moon’s distance from the 

centre of the Earth is: 
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where terms smaller than 150km have been neglected. The spherical ecliptic 

coordinates may again be converted to equatorial Cartesian coordinates using the 

transformation: 
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A change of the reference system from EME2000 to the equator and equinox of 

some epoch eqxT is further accounted for in the same way as for the Sun’s coordinates. 

 

3.4. Interpolation of Planetary Ephemerides 
 

As discussed before, full model calculation of the planetary ephemerides, nutation, 

precession and polar motion parametres introduce a high computing burden. An 

alternative method is to interpolate these values using a pre-calculated grid. Different 

parametres require a different grid density and different interpolation method. There 

are in total five types of parametres used in the orbit propagation: nutation, 

precession, polar motion, Sun and Moon ephemerides.  

 

3.4.1 Nutation 

 

The IAU 1980 nutation series with 106 terms was used. For calculations requiring 

values of the nutation angles with an accuracy of 1± mas, it is necessary to add some 
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correction terms due to the incomplete IAU 1980 theory. From VLBI and LLR 

observations, the IAU 1980 theory of nutation is known to be in error at the level of 

several milli-arcseconds and an improved nutation theory due to Herring et al (1991) 

is described in McCarthy et al. (1993). Nevertheless, the IAU 1980 series is retained 

as the official standard in the IERS convention and the existing deficiencies are 

compensated for by observed values of the celestial pole offsets ψδ∆  and εδ∆ . 

Improved nutation angles are obtained by adding these corrections to the IAU 1980 

values: 

 
εδεε

ψδψψ
∆+∆=∆

∆+∆=∆

1980

1980

IAU

IAU       (3.26) 

There are two methods to get these corrections. The planetary correction model and 

long-term tidal model are used in the first method. Herring et al (1991) published 

these two correction series based on analysis of the long-term VLBI observations. 

The second method is quite simple in that these two correction values are published 

in the Bulletin B of the IERS, and a simple triple interpolator is recommended by 

IERS. The second method is our choice for its simplicity. 

 

Nutation calculations require three angle variables: ψ∆ , ε∆  and ε . We need to 

inspect the daily variation of these values. Figure 3.4 illustrates a three day result. 

The result suggests a linear interpolator is adequate. The standard deviations of a 

linear interpolator for ψ∆ , ε∆  and true obliquity ε  are 210− , 210−  and 110− mas, 

respectively, which is good enough for our onboard orbit determination application. 
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Figure 3.4 Nutation angle variations over three days (45th of 2002 ~ 47th 2002). 

 

3.4.2 Precession 

 

Compared to the nutation calculation, computation of precession is quite simple. The 

IAU 1976 theory of precession expression is used. The three precession angles 

ξ ,ϑ and z  are slowly-varying variables. Figure 3.5 shows a three-day variation of 

these values. The result also suggests a linear interpolator. The standard deviation of 

a linear interpolator for,ξ ,ϑ and z  are around the 0.01 mas level. 
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Figure 3.5 Precession angle variations over three days (45th of 2002 ~ 47th 2002). 

 

3.4.3 Earth Rotation and Polar motion 

 

The IAU precession and nutation theories yield the instantaneous orientation of the 

Earth’s rotation axis, or, more precisely, the orientation of the Celestial Ephemeris 

Pole (CEP) with respect to the International Celestial Reference System. The 

rotation about the CEP axis itself is described by the Greenwich Mean Sidereal Time 

(GMST) that measures the angle between the mean vernal equinox and the 

Greenwich Meridian. Given the UT1-UTC and UT1-TAI time difference as 

monitored and published by the IERS, the Greenwich Sidereal Time at any instant 

can be computed. To obtain milli-arcsecond accuracy in the equation of the 

equinoxes, two additional terms Ω′′−Ω′′+ cos000013.0sin002649.0  with Ω  

denoting the longitude of the Moon’s ascending node should be added to the right 

and side of the equation of the equinoxes. Two polar motion parametres px  and 

py are used to define the Celestial Ephemeris Pole with respect to the IERS 

Reference Pole as a function of time. Variation of these parametres over 3 days is 

illustrated in Figure 3.6. 
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Figure 3.6 Polar motion parametre variations over three days (45th of 2002 ~ 47th 

2002). 

 

The interpolation of the polar motion parametres and UT1-UTC are more 

complicated than for nutation and precession. A revised 3rd order Legendre 

interpolation method is recommended by the IERS convention [IERS convention, 

1996].  

 

In our research context, the IERS B bulletin should be updated every month, which 

means it needs to be uploaded to the satellite each month. If the data is not updated 

on time, an extrapolater could be used, that is, the one month’s prediction value must 

be obtained from the previous one month’s data. For UT1-UTC, UT1-TAI, ψδ∆  

and εδ∆ , it is sufficient to use quadratic or even linear interpolation. For px  and py , 

more care is needed. Even though polar motion cannot be readily predicted, 

extrapolation over a certain interval is nevertheless possible from previous data. For 

this purpose the motion of the pole may be modelled as a superposition of a linear 

motion (polar wander), and an oscillation with a period of 365.25 days (annual term), 

and an oscillation with a period of 435 days (Chandler term). Appropriate 
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coefficients that provide an extrapolation of tabulated polar motion data with an 

accuracy of about 01.0 ′′  over one month are published twice per week in IERS 

Bulletin A issued jointly by the IERS and US National Earth Orientation Service 

(NEOS). Similar predictions are also provided by the US National Imagery and 

Mapping Agency (NIMA) as part of the GPS precise ephemeris generation process. 

[NIMA, 1999]. 

 

A more flexible model has been proposed by Chao [1985]. The two components of 

polar motion are represented by time dependent functions: 

 
)/2cos()/2cos(

)/2cos()/2cos(

cyyxcyayayayyyp

cxcxcxaxaxaxxxp

PtcPtctbay

PtcPtctbax

φπφπ

φπφπ

+++++=

+++++=
  (3.27) 

with a total of 16 free parametres cyxa φ,......,  that are obtained from a least squares 

fit to six years of past polar motion data. By allowing for different annual and 

Chandlerian periods aP  and cP , as well as different phases aφ  and cφ  in the x- and 

y- component of polar motion, some additional degrees of freedom are introduced in 

this model which improves the prediction in times of notable period changes.  

 

3.4.4 Solar & Lunar Coordinates 

 

We use the simplified analytical method to calculate the Sun and Moon position in 

the inertial frame, as discussed in a previous section. Since the forces exerted by the 

Sun and Moon are much smaller than the central attraction of the Earth, it is not 

necessary to know their coordinates to the highest precision. Not only can we use the 

simplified method, but we also can use a linear or quadratic interpolator to get the 

coordinates from a pre-calculated Sun & Moon coordinate grid. We will discuss the 

impact of this in section 3.7.2. 

 

3.4.5 Summary 

 

Table 3.2 summarizes the interpolation method. The data grid is calculated at the 

initialization stage and the grid step varies depending on different data. To retain the 

interpolation accuracy, the grid step can be adjusted. For example, only 4 data points 

are needed in a two hour filtering process if a half hour grid step is used, this greatly 
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reduces the computational burden during the propagation stage, with only several k 

storage increase and small computing burden increase in the initialization stage. 

 

Table 3.2 Celestial parametre interpolation schemes. 
 Variables Type Grid step Interpolation method 
Nutation: ψ∆ , ε∆ , ε  Calculated 30 minutes Linear interpolator 

Precession: ξ ,ϑ , z  Calculated 30 minutes Linear interpolator 

Sun & 
Moon: 

zyxS ,,
r

, 

zyxM ,,
r

 
Calculated 30 minutes 3rd Lengendre 

Polynominal 

UT1: UT1-UTC, UT1-
TAI 

IERS 
Bulletin 5 days 3rd Lengendre 

Polynominal 
Polar 
motion: px , py  IERS 

Bulletin 5 days 3rd Lengendre 
Polynominal 

 

3.5 Symmetric-sphere Atmospheric Density Model 
 

3.5.1 Introduction 

 

From section 3.3.1 we can see that the MSIS86 atmospheric density model uses 

around 20% CPU time both in the initialization and in the partial computing modules. 

The modelling of air density at satellite altitude is quite a demanding task. The shape 

of the temperature profile in the thermosphere and algorithms for computing the 

exospheric temperature form the core of the current density model. Furthermore, the 

temperature profile is a function of solar activity, diurnal and annual effects and 

geomagnetic activity. Other important effects influencing density are seasonal 

latitudinal variation and semi-annual variation. Currently there are several upper 

atmospheric model in use, such as CIRA-72, CIRA-86; Jacchia-71, Jacchia-77; 

MSIS-86, MSIS-90 and DTM90. However, they are all very complicated numerical 

methods and depend heavily on the daily or monthly Sun flux and geomagnetic data 

which is not suitable for onboard processing. Another reason to use the simplified 

analytical density model is that although all the above models have not been 

modelled very well, they all have about a 5%~10% inherent uncertainty and 

20%~30% total uncertainty.  
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3.5.2 Methodology 

 

If only the balanced atmosphere is considered, according to hydrostatics the density 

distribution is approximately a form of exponentiation: 

( )[ ]Hrr /exp 00 −−= ρρ       (3.28) 

Here it is spheric atmosphere. 0ρ  is the atmospheric density of the reference 

spherical surface, where 0rr = , and H refers to the standard height of density. The 

expression is consistent with the law that density is decreasing with height increase. 

Meanwhile, according to the above mentioned atmosphere models, the change of 

density slows down along with height, therefore the indicated height of density 

increases slowly with height. A reasonable way of approximating this is to assume 

the linear relationship of H  to h (200 ~ 600km) [King-Hele, 1964]. It can be 

expressed as: 

( ) ( )00 2
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generally, ,1.0≈µ  2.0<µ , the corresponding formula of density in Equation (3.28) 

is converted to: 
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From the result of King-Hele, (1964), here referred to as Model CIRA-61, where h = 

200km: 

1.0,4.37,/106.3 0
310

0 ==×= − µρ kmHmkg    (3.31) 

 

Due to the Earth being an oblate spheriod, under the assumption of balanced gravity, 

the surface of atmosphere with equal density can be also viewed as an approximately 

oblate surface [King-Hele, 1964, 1976], then Equation (3.30) can be modified: 
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    (3.32) 

The above formula describes the oblate spherical atmosphere, where σ  refers to the 

distance between the Earth centre and the ellipsoid surface that crosses the reference 
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point ( 00 , HH == ρρ ). Equation (3.32) basically reflects the atmosphere 

distribution in the space impacted by the gravity of the Earth. That distribution is 

relatively consistent with the distribution of mean density produced by those existing 

models for atmosphere. In the early researches as to the impact of atmosphere drag 

on satellite orbits, King-Hele (1964) and others adopted this expression of 

approximate density, where the corresponding reference point is at the perigee 0P  of 

the satellite orbit (the impact of atmosphere drag around perigee is the most 

significant), the density 0ρ  and the indicated height of density 0H are 0Pρ  and 0PH , 

respectively. 

 

The impact of solar radiation on atmosphere density shows different periodic 

changes, and the diurnal effect due to the Earth’s rotation is particularly distinct. The 

density in the daytime is much more than the one at night at the same height and 

latitude. Generally speaking, the density at local time 14h reaches the maximum and 

around this time the density changes rapidly, whereas the density is down to a 

minimum value at about 2 ~ 5 hours, when the density changes slowly. However, 

just as King-Hele (1964) pointed out, it is reasonable as the a order approximation to 

assume that the maximum and minimum of both the Earth’s centre and diurnal effect 

are on the same line, about which the surfaces with equal density are symmetrical. 

Considering the changes of density with both height and time with this assumption in 

mind, we have: 

[ ] ( )rHrF /(exp)cos1(0 σϕρρ −−+= ∗     (3.33) 

where ϕ  is the angle between the satellite vector r  and the vector mr  where the 

diurnal maximum density lies. With the assumption of the above described 

symmetrical diurnal effect, the relationship between the mr  and the Sun can be 

expressed as: 

δδλαα =+= mmm ,       (3.34) 

where δα , are the Sun’s equatorial latitude and longitude, respectively. mλ is o30 . If 

*F refers to the diurnal variation factor, its relation to the ratio *f  (daytime density 

night-time density ratio) can be described as: 
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According to this definition, 0ρ  is the diurnal mean density on the reference 

ellipsoid surface where σ=r , i.e., °= 90ϕ . 0ρ can be calculated from the adopted 

atmosphere model and relevant parametres.  

 

3.6 Integral Equation Method 
 

3.6.1. Integral Equation 

 

Integral Equation of Satellite Orbit 

 

The integral equation method for satellite orbit integration was first proposed by 

Feng (2000). It begins with the differential equation of the two-body motion of a 

satellite, which comes from Newton's second law of motion and the universal 

gravitational law: 

rr 3r
GM

−=&&         (3.36) 

where 

r&&  is the satellite acceleration vector 

r is the satellite position vector 

GM is the product of the gravitational constant G and Earth mass M 

Including also the velocity vectorr& , Equation (3.36) can be rewritten as: 

xBx t=&         (3.37) 

where 
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     (3.38) 

Given a set of position and velocity vectors at the initial time epoch t = t0: 
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[ ]Tzyxzyx 0000000 &&&=x  

we can obtain an analytical solution of the two-body problem [Goodyear, 1965]: 

0t xHx =         (3.39) 

where 
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is the solution of the differential equation: 

ttt HBH =&         (3.41a) 

0IH
0t =         (3.41b) 

0I is the 6-by-6 identity matrix. Refer to Appendix A for the computation of all the 

elements of the matrix H.  

 

For the perturbed motion of a satellite, Equation (3.37) can be written as: 

)x,(xBx tt tf+=&        (3.42) 

where )x,( ttf  is the 6-dimensional vector, a function of the spacecraft state, which 

can be composed of all perturbing forces acting on the satellite, such as the non-

spherical and inhomogeneous mass distribution within the Earth (central body), other 

celestial bodies (Sun, Moon etc); Earth and oceanic tides, atmospheric drag, Earth 

and solar radiation pressure and geomagnetic effects, etc.  

 

To derive the solution of Equation (3.42), we redefine the 0x  in Equation (3.39) as 

the function of time tξ : 

ttt ξHx =         (3.43) 

which is regarded as the solution of Equation (3.42). To determine tξ  we substitute 

Equation (3.41), together with its derivative: 

tt ξξ &&& ttt HHx +=        (3.44) 

into Equation (3.40) and using Equation (3.41a) obtain: 
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),(1
tttt tf ξξ HH −=&        (3.45) 

The integration of Equation (3.45) gives: 

ττ τττ df
t

t
),(

0

1∫ −+= ξHHξξ
0tt      (3.46) 

Substituting Equation (3.45) into Equation (3.43), and defining the state transition 

matrix: 
1HHΦ −= ττ tt ,        (3.47) 

We have the integral equation for motion of a satellite: 

∫+=
t

tt df 
0

),( ττ ττ xΦxΦx t,ttt, 00
     (3.48) 

The solutions of Equation (3.40) with the initial value 
0t

x and the integral Equation 

(3.48) should be equivalent. Comparing Equation (3.48) to (3.42) it can be seen that 

Equation (3.48) also consists of components due to the central body and perturbation 

forces. In particular, the first term gives the states of the satellite at time t from the 

states of the elliptic orbit at t0, while the second term gives the state variations due to 

the perturbations during the interval ( tt ,0 ). The matrices 
0tt,Φ and τt,Φ  play roles of 

state transitions in both cases.  As seen in a later section, it was these state transition 

matrices that make the numerical solution of the integral equation comparatively 

simple.  

 

Equation (3.48) is called the “integral equation” due to the presence of the unknown 

function tx under the integral symbol. Integral equations appear in the mathematical 

theory of many scientific and engineering branches, and are categorized into 

different types. Theoretical and numerical methods have been established for each 

type of integral equation. This integral equation belongs to the class of 

Hammerstein-Volterra integral equation of the second kind.  

 

State Equations for Orbit Estimation 

 

To be able to estimate the states of the orbit, we need to establish the state transition 

equation starting with the differential Equation (3.42). Considering some of 

unknown parametres in the perturbing forces, µ  absorbs variations on both sides of 

Equation (3.44):  
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where µ-µ∆µ ,x-x∆x ,xxx∆ ~ ~~ ==−= &&& , and x~  is the nominal orbit solution as 

computed by Equation (3.48) with the initial state 0x  and the parametres µ~ . The 

solution of the differential equation (3.51) is given by the following integral 

equation: 
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where the partial derivation 
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Equation (3.51) is also an integral equation. Although the integral computation 

compartively simple, the computation of Equation (3.51) still involves relatively 

heavy computation because of the complexity of the partial derivatives. Ignoring the 

effects of perturbing forces on the partial derivatives, Equation (3.51) can be 

simplified as: 
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Thus, the difference equation (3.50) becomes: 
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Define µ
0,ttΦ as the state transition matrix relating tx∆ to µ∆ : 

∫ ∂
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=
t

t
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])),(,(),([)( 0 ττττµ µ
µXΦΦ     (3.54) 

then the state equation can be written: 

µΦxΦx
00 tt,tt,t ∆+∆=∆

µ
µ

0t
      (3.55) 

 

In summary, using the integral equation (Equation (3.48)) to represent satellite orbits 

not only provides a simple and efficient numerical solution for satellite orbit 

prediction, but also gives the transition matrices for the force parametres at the same 

time. Compared to the numerical methods for orbit determination [Webb & 
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Zvmberge, 1995], this algorithm is significantly simplified, thus saving huge amount 

of computation (thanks to the simplicity of the matrix H in Equation (3.40) and the 

process in Equation (3.52)). However, this simplification introduces in some 

limitations to the application of the algorithm. The coefficients in H matrix remain 

valid only for two-body orbits. The computation of the state transition matrix 
0,ttΦ  is 

based on a two-body orbit instead of a perturbed nominal orbit. Using this matrix to 

transit the state biases over a long period will introduce some uncertainty.  In 

general, the proposed algorithm is suitable for short-arc processing, as suggested for 

this study. But for long-arc batch filtering this simplification may cause some 

problems.  

 

3.6.2 Step Control Algorithm 

 

In order to obtain a desired accuracy with minimum computational effort, the orbit 

integrator adjusts the time integration step size t∆ . The idea is quite simple. First, the 

accuracy of the integration is compared to some desired accuracy. Second, the step 

size is increased or decreased depending on whether the accuracy of integration is 

better or worse than the desired accuracy. 

 

The accuracy of integration is determined by the so-called step-doubling procedure. 

In this procedure the position and velocity vectors of the satellite at the current time 

step n: 

  zyxivr n
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n
i ,,;, =       (3.56) 

are advanced by two time steps using the current step size nt∆ : 
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In addition, *n
ir and *n

iv are advanced using twice the current step size: 
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The accuracy is defined to be the difference between the two new aforementioned 

states, namely 

  12 ++ −≡ n
i

n
i

n
i xx∆       (3.59) 

where the state vector n
ix  refer to both position and velocity vectors. 
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Next n
i∆  is compared to a desired accuracy 0i∆ . To compute the new step size 1+∆ nt , 

the following algorithm is used: 
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Where S is a safety factor (the recommended value of S is 0.9). 

 

3.7 Experiment Studies 
 

3.7.1 Description 

 

The purposes of the experimental study are threefold:  

1. To test the orbit dynamical model simplification algorithms discussed in 

previous sections. 

2. To explore the efficiency and capacity of simplified methods to reduce the 

onboard computational burden. 

3. To assess the accuracy of orbit integration using simplified methods 

compared with full models. 

 

The experimental studies are based on the data from three LEO missions: T/P, SAC-

C and CHAMP. Their altitudes are 1340km, 700km and 450km, respectively, and 

represent three typical LEO orbits. The reference ephemerides are post-processed 

results from JPL’s GIPSY-OASIS II software. The position errors are at the 

centimetre level for T/P, and decimeter level for SAC-C and CHAMP. All the 

proposed methods are tested to validate the algorithm efficiency. Finally, we 

compare the orbit integration accuracy as well as computing time and memory usage 

of simplified method against the traditional full model strategies. 

  

3.7.2 Truncated Earth Gravitational Model 

 

The first step is to truncate the Earth gravity model. The order & degree of JGM-3 is 

up to 7070 × . Higher order brings higher accuracy, but also brings much greater 
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computational burden. A proper balance between accuracy and computing burden is 

the objective of this investigation. 

 

3.7.2.1 Order of Magnitude of Acceleration 

 

The order of magnitude of acceleration is calculated from 22×  ( 2J ) to 7070 ×  

(highest accuracy). All the values are compared with the 7070 ×  model. Figure 3.7 

illustrates the result. It is clearly shown that CHAMP requires a higher order of 

gravity model to achieve the same accuracy comparing with SAC-C and T/P. 

Satellites with lower altitude are more affected by Earth gravity field. To achieve a 
26 /10 sm−  acceleration accuracy, T/P requires around 1515× order & degree of 

gravity model, while SAC-C requires 3030 × , and CHAMP requires 6060 × . 

 
Figure 3.7 Comparison of gravity acceleration accuracy using different degree & 

order at different altitudes. 

 

 

 

 



 68 

3.7.2.2 Computing Time versus Accuracy 

 

Both computing time and orbit integration accuracy for different truncation schemes 

were studied. From the result of the previous experiment, we chose four typical 

JGM3 truncation schemes: 1010 × , 2020 × , 3030 ×  and 7070 × .  

 

One day’s orbit integration was made for T/P, SAC-C and CHAMP. Except for the 

different truncated gravity models, the other dynamical models used in the integrator 

were kept the same: 

- Third body gravity: Sun & Moon and all planets. 

- Pole Motion: IERS Bulletin B. 

- Celestial Frame: IAU 1980 nutation, IAU 1976 precession. 

- Tidal potential model: 2nd degree Legendre polynominal for the Sun & 

Moon. 

- Solar pressure: direct effect with shadow consideration, the coefficients 

for T/P, SAC-C and CHAMP are: 0.003, 0.023 and 0.0, respectively. 

- Atmospheric Drag: using MSIS86 density model, the ballistic coefficients 

are 0.001, 0.02 and 0.015 for the three missions. 

 

It is very difficulty to obtain the precise values without an estimation process, thus 

the solar pressure and drag force parametres were roughly estimated by satellite 

physical parametres. Biased surface parametres cause big orbit integration error for 

LEO satellites, but this is not important in that we only want to know the relative 

accuracy and computing speed. Table 3.3 gives detailed results for the SAC-C test. 

We can see that the mathematical operations increase dramatically as the gravity 

model size increases.  

 

Table 3.3 Computational burden and accuracy of SAC-C 24h orbit integration using 
different JGM-3 gravity model truncations. 

Size Number of   
Coefficients 

Number of 
Math Flops 

Orbit 
Integration time 
(seconds) 

Maximum Error 
Compared to 

7070 × (m) 
1010 ×  126 1553 76.36 218.19 
2020 ×  456 5103 91.14 80.41 
3030 ×  986 10653 92.08 13.76 
7070 ×  5160 52853 146.27 0.0 
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Figure 3.8 illustrates the orbit integration accuracy variation against computing time, 

the orbit integration errors being compared wit the use of a 7070 ×  model. We can 

see that the accuracy is unacceptable for all missions if only 1010 ×  model is used. 

2020 ×  to 3030 ×  is a better choice, especially for T/P. The computing burden of 

the 3030 ×  truncated model is 60% less than that of the 7070 × model, but results in 

several metres accuracy loss. 

 
Figure 3.8 Orbit integration accuracy against computional time using various degree 

& order of JGM-3 model. 

 

3.7.2.3 Short-arc Orbit Integration Performance 

 

A short-arc refers to from tens of minutes to several orbit revolutions. For the 

proposed short-arc orbit determination method we only need to address the 

performance of the orbit integrator over a several hours arc. We chose 15 minutes, 1 

hour and 2 hours for the short-arc orbit integration testing. The impact of the 

truncated gravity model was also considered. The results are shown in Figure 3.9.  

We can see that for the 15 minute arc, the orbit integration accuracy can be 
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controlled within several metres easily for all satellites, even with the 1010 ×  model. 

For 1 hour and 2 hour arcs, the same accuracy still can be achieved if higher than a 

2020 × gravity model is used; but this is not the case for CHAMP. It is not possible 

to get below 10 metres orbit integration accuracy for CHAMP even using 7070 ×  

model, this suggests more accurate atmosphere drag model should be considered, 

and that the drag coefficients also should be adjusted during the orbit estimation 

process. 

 

 
Figure 3.9 Short-arc orbit integration accuracy using various degree & order of 

JGM-3 model. 

 

3.7.2.4 Simplified Solar & Lunar Ephemerides 

 

This experiment is to validate the analytical, simplified solar & lunar coordinate 

calculation method described in section 3.3. Two aspects have been addressed: the 

positional error compared with the DE405 ephemerides; and the acceleration error 

introduced by this simplification. 
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Figure 3.10 illustrates the 3D coordinate error in the inertial system (ICRF) 

compared with the JPL DE405 data. It shows 0.001% and 0.01% error for the Sun 

and the Moon, respectively, which is good enough for the short-arc orbit integration. 

The lower part of Figure 3.10 shows the absolute 3D coordinate error.  

 

Furthermore, Figure 3.11 shows the impact on the acceleration. The upper half 

shows the order of magnitude of the acceleration introduced by solar and lunar 

gravity; the lower part gives the difference between simplified method and using 

DE405 ephemerides. Three missions were included in this experiment. We can see 

that, unlike the Earth gravity effect, higher orbit are more likely affected by the solar 

and moon gravity. And the acceleration errors introduced by the simplification are 

around 211 /10 sm− and 210 /10 sm− for the Sun and Moon, respectively. From our 

discussion in section 3.2.1, an acceleration error smaller than 210 /10 sm−  is 

acceptable for our short-arc orbit determination method, hence this result is 

satisfactory. 

 
Figure 3.10 Simplified solar & lunar ephemerides error compared against JPL 

DE405. 
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Figure 3.11 Solar & lunar perturbation order of magnitude using simplified model 

for different height missions. 

 

3.7.3 Interpolation of Celestial Ephemerides 

 

The objective of this experiment is to validate the methods developed in section 3.4. 

Instead of precisely calculating the nutation, precession, polar motion parametres, as 

well as the solar and lunar coordinates at every epoch, an interpolator was used. The 

best way to determine the accuracy of the interpolation is to check the coordinate 

transformation result between the terrestrial-fixed reference frame and celestial 

inertial reference frame. Coordinate transformation from ICRF to ITRF was tested 

on 14th~16th, February 2002. Both the reference ICRF and ITRF data are from JPL’s 

precise SAC-C ephemerides. The interpolation method uses interpolated 

transformation parametres, and the transformed coordinates are compared against the 

standard non-interpolation ones. Figure 3.12 illustrates the coordinate error 

introduced by interpolated parametres and the RMS for the x, y and z components. It 

is noticed that only several centimetres error was introduced, which meets our 

requirement. It is also found that error in the z-axis is much bigger than for the other 
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components and this suggests large error from the polar motion parametres rather 

than from nutation and precession. 

 

Furthermore, the interpolation accuracy of the simplified solar and lunar 

ephemerides was investigated. The 3D acceleration value was calculated using the 

interpolated method and then compared to using the DE405 precise ephemerides. 

Figure 3.13 shows the result. It is observed that the errors are at the same level as the 

result of Figure 3.11, suggesting that the interpolation error can be ignored. 

 
Figure 3.12 Coordinate transformation errors between ITRF and ICRF using 

interpolated parametres compared to the standard method. 
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Figure 3.13 Solar & lunar perturbation error due to the interpolation. 

 

3.7.4 Simplified Atmospheric Density Model 

 

The simplified atmospheric model discussed in section 3.5 was tested.  First, the 

performance of several well-known empirical atmospheric density models, including 

the MSIS 86, Jacchia 77 and DTM90, were compared.  The CPU usage, mean 

density difference and maximum density difference were calculated based on values 

derived from the MSIS 86 model. Table 3.4 gives the result. We found big 

discrepancies even among these popular models due to the complexity of Earth’s 

upper atmosphere. The proposed method is very simple compared with the 

traditional empirical methods. It is about 100 times faster in speed. On the other 

hand, it has a 30% mean density bias and 153% maximum density bias from MSIS86 

model, and it is not clear to what extent this bias will affect the orbit integration 

accuracy. But we also can see that even a modern DTM90 model has a 19% mean 

density bias and 101% maximum density bias. Thus we can conclude that the 

proposed simplified atmosphere model has a performance roughly in accordance 

with current empirical models. To account for the uncertainty in atmosphere density 
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models we can tune the atmospheric drag coefficient during the orbit estimation 

process in order to compensate for the errors in the atmospheric density. We will 

discuss this later. 

 

Table 3.4 Comparison of density models in terms of CPU time performance, mean, 

and maximum difference in density relative to MSIS86. 

Model CPU nm∆ρ ea % max∆ρ % 
MSIS 86 100.00 - - 
Jacchia 77 3425.00 8.0 89 
DTM90 9.30 19.0 101 
Simplified Model 1.50 30.0 153 

 

Figure 3.14 compares the atmospheric density calculated at T/P, SAC-C and 

CHAMP altitude using MSIS86 and the proposed method. Best agreement was 

found at the lowest altitude. This is due to the fact that the upper atmosphere is 

harder to model and thus needs more empirical data. We also found that density from 

MSIS86 indicates an hourly fluctuation, while the simplified method doesn’t, except 

at CHMAP altitude. This suggests a deficiency in the upper atmosphere modelling.  

 
Figure 3.14 Atmospheric density difference between MSIS86 model and simplified 

model for different height missions. 
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3.7.5 Integral Equation Method and Step Size Control 

 

From the description of the Integral Equation (IE) method in section 3.6.1, we can 

see that the accuracy of the IE method is of the same order as the RK4. What we like 

to test is the performance of the step size control with the IE method. The orbit 

integration setting is the same as in section 3.7.1 for three missions. The initial 

integration steps are 10s for all tests. Furthermore, the step changes are related to 

different truncation tolerances, we used 310−  and 510− m. Table 3.5 lists the 

minimum, maximum and mean step sizes for three satellites with different error 

tolerance. It provides us with a guide as to how to determine the proper step size for 

the orbit integration. 

 

Table 3.5 Step size change with different truncation tolerance. 

t = 310− m t = 510− m 
 

Min (s) Max (s) Mean (s) Min (s) Max (s) Mean (s) 
TOPEX 2.2 35.5 13.2 0.6 25.6 5.4 
SACC 1.6 32.2 12.2 0.9 23.1 4.9 
CHAMP 0.8 25.1 11.5 0.2 18.5 4.6 

 

3.7.6 Orbit Integration with Full Simplified Consideration 

 

Different algorithms have been validated in previous experiments. We are more 

concerned about the overall performance of the simplified method. In this 

experiment, orbit integration performance is compared between the full model and 

the simplified model. Table 3.6 lists the details of these two models. The results are 

derived from one day’s orbit integration. 

 

Figure 3.15 give the 3D position error from these two methods. The maximum 3D 

positional errors are 0.5m, 20m and 130m for T/P, SAC-C and CHAMP, 

respectively. This suggests a good orbit integration performance for T/P for a 24 

hours arc length. Although not as good as T/P, the simplified method gives a 

satisfactory result for SAC-C with up to 4 hours’ arc length; and up to 1 hour’s arc 

for CHAMP.  

 

 



 77

Table 3.6 Comparison of simplified and full orbit model. 
 Full Model Simplified Model 
Gravity JGM3 7070 ×  JGM3 3030 ×  
Planetary 
ephemerides JPL DE405 Analytical method 

Atmospheric 
density model MSIS86 Simplified method 

Upper wind 
model HWV93 - 

Solar pressure Direct effect Direct effect 
Nutation, 
precession 

IAU 1980 nutation / IAU 1976 
precession, real time calculation 

IAU 1980 nutation / IAU 1976 
precession, interpolation method 

Polar motion IERS B bulletin IERS B bulletin 
Integrator RK4(5) with 5 seconds step Integration method with step control 
 

 
Figure 3.15 Comparison of 3D orbit integration error between simplified model and 

full model. 

 

Figure 3.16 gives the radial, along-track and cross-track positional errors. This also 

suggests a similar conclusion to Figure 3.15.  The computational burden is 

characterized by the computing speed. The experiment was carried out on a desktop 

PC, the configuration is PIII 1GHz, 256 Mbytes memory. The computing speed is 

measured by recording time tags at the beginning and end of the orbit integration 

program. Though we cannot get precise figures in this way, we are only interested in 
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the relative performance. Figure 3.17 gives the computing speed comparison 

between the simplified method and full model method. The simplified method is 3 ~ 

4 times faster than the full model method. This result is quite encouraging. 

 
Figure 3.16 Comparison of radial, along-track and cross-track positional error 

between simplified model and full model. 

 
Figure 3.17 Computation speed comparison.  
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3.8 Conclusion 
 

The research efforts on orbit dynamical model simplification have led to the 

establishment of a technical capability for onboard orbit determination in near-real 

time. The detailed computational burden of orbit integration was analyzed,  and 

several model simplification schemes were identified, which can reduce the onboard 

computation resource requirement while retaining enough orbit integration accuracy. 

These simplification strategies can be summarized as follows: 

• Reduce the degree & order of the Earth gravity model; 

• Use an analytical method to obtain solar and lunar coordinates instead of the 

memory-consuming JPL DE405 interpolation method. 

• Interpolate the nutation, precession and polar motion parametres from a given 

grid instead of calculating them precisely. 

• Replace the traditional computation requiring an empirical atmospheric 

density model with a simplified analytical model. 

• Use the Integral Equation method to propagate the orbit, as well as a step 

control algorithm. 

• Simplify the orbital state transit matrix algorithm by only considering the 

2J term. 

All the algorithms have been separately validated using real data from three LEO 

missions: T/P, SAC-C and CHAMP. Finally, the performance of orbit integration 

was evaluated and compared between the results from the full orbital models and the 

simplified models. Extensive testing has shown: 

• For orbit integration using the full model, Earth gravity accounts for around 

40% of the computing burden; atmospheric density model and planetary 

coordinates calculation account for around 20% of the computing burden 

each; and the nutation, precession, polar motion and time transformation 

tasks take another 10%. 

• To obtain metres level accuracy, the 7070 ×  Earth gravity model can be 

simplified to 20 ~ 30 order & degree for satellites at altitudes of T/P and 

SAC-C. For a shorter arc, such as within 4 hours, this simplification is 

suitable for most LEO satellites. 
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• The computational burden of computing nutation, precession, polar motion, 

solar & lunar coordinates and the time transformation can be reduced by 

using an interpolation method and analytical solar & lunar ephemerides. 

• The tested atmospheric density model reduced the computational 

dramatically, but the accuracy compared to MSIS86 was also degraded by 

around 30%. Considering the fact that even a precise DTM90 model has a 

19% error compared to MSIS86, the proposed method is acceptable with 

nearly 60 times less computing time. 

• The Integral Equation method with simplified orbital state transition matrix 

algorithm (algorithm in Appendix A) also reduces the computational effort, 

especially in the orbit estimation process. 

• Compared to the full model method, the proposed simplified orbital model 

strategies using all algorithms can achieve metres level accuracy for a 4 hour 

short-arc for SAC-C and T/P. At the altitude of CHAMP, the same level 

accuracy can also be achieved with a 60 minute arc. The computational 

burden of the simplified method is 3 ~ 4 times less than that of the full model 

method. 

 

The experimental study of the simplified orbit model has identified a means of 

developing an onboard orbit determination using limited computing resources 

onboard.  
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Chapter 4 

Gravity Acceleration Approximation Method 

 

 

 

Improving the speed of gravitational acceleration computations plays a critical role 

in reducing the overall computational burden of onboard real time or near-real time 

orbit determination processing. The most straightforward methods to improve the 

speed of computing gravitational accelerations include truncating the gravity model, 

pre-selecting a significant subset of coefficients, and tuning a truncated gravity field 

through estimation. Of these strategies the truncation method is most frequently used. 

From the test results presented in Chapter 3 truncation can reduce the computational 

burden by around 40% while retaining meter level orbit integration accuracy in most 

circumstances. If sub-metre accuracy for longer arcs is required, a higher order of 

Earth gravity model is still needed, especially for low altitude satellites. In this case, 

the truncating method is no longer suitable.  

 

Based on research by Hujsak [1996], an alternative method was proposed to directly 

interpolate the gravitational acceleration from a grid of pre-computed values. The 

recursive gravitational computation is replaced by a much simpler interpolation 

method but requires several Mbytes more memory. The results show that the 

computational burden of the method is equivalent to that of a 55×  gravity model. 

The following sections describe these methods in detail, and present extensive 

results to explore its possible application for onboard orbit determination. 

 

4.1 JGM Earth Gravity Model Overview 
 

4.1.1 Geopotential Spherical Harmonic Expression 

 

Because the irregular distribution of the Earth mass is unknown, the geopotential 

coefficients have to be determined through the analysis of measurements. Three 
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principle types of observations are currently used to improve the Earth gravity 

models: satellite tracking, surface gravimetry and altimeter data. From around the 

1960s, some gravity models have been developed using satellite data. 

 

One of the most precise EGM96 currently available for orbit determination is the 

Joint Gravity Model (JGM). JGM was developed for the oceanographic mission T/P, 

which had challenging requirements for the radial orbit accuracy of 13cm. This 

mission led to cooperation between NASA’s GSFC, the University of Texas Centre 

for Space Research (CSR) and the Centre National d’Etudes Spatiales (CNES) in the 

area of Earth gravity filed determination. As a result, the final pre-launch T/P gravity 

model JGM-1 of order and degree 70 was released in 1994 [Nerem, et al., 1994]. It 

used the GEM-3 gravity model solution, but processing all of the data with improved 

models and constants. Its successor JGM-2 was a first post-launch T/P model, which 

included a six-month set of T/P SLR and DORIS data. A further improvement in 

accuracy was obtained with JGM-3 [Tapley, et al., 1996], which comprised new T/P 

SLR, DORIS, as well as for the first time GPS tracking data of the T/P satellite. In 

addition, new SLR data from LAGEOS1, LAGEOS2 and Stella, as well as DORIS 

tracking of the SPOT2 satellite, were included. 

 

Like other gravity models, the JGM3 geopotential model is usually represented by a 

spherical harmonic expression - the harmonic expression is given in Equation (3.6). 

In general, excluding the central two-body force, the non-spherical geopotential can 

be expressed in the Earth-fixed frame as: 
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The notation is the same as for Equation (3.6). The first term of the right-hand side 

of the equation is the sum of the zonal terms 0lC , if one considers the more general 

case of mass distribution that is symmetric with respect to the axis of rotation. But 

the Earth is not an ideal rotational ellipsoid. The additional tesseral and sectorial 

geopotential coefficients are described by the second set of terms  

 



 83

Furthermore, according to Koskela [1967], acceleration components in the Up (U), 

East (E), and North (N) coordinate system in the Earth-fixed frame are: 
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Where prime ( )'  indicates the derivative with respect to ( )φsin . 

 

4.1.2 Gravity Acceleration and Partials 

 

The acceleration r&&
r

 expressed in the inertial frame, which is equal to the gradient 

of ),,( λφrUs , may be expressed as: 
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where the tΘ is a time-dependent matrix that describes the Earth’s rotation, 

precession and nutation, and ),,( zyxr′ is the satellite vector in the Earth-fixed frame. 

The second-order partial derivatives of the potential also can be expressed as: 
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4.2 A Study of Gravity Acceleration Variation with JGM-3 Model 
 

After the removal of the central body force, the order of magnitude of Earth gravity 

acceleration is around 22 /10 sm− . From Equation (4.1), we can see that the 

acceleration only depends on the coordinates ),,( ϕλr  in the Earth-fixed frame. This 

suggests the idea to of a global gravity acceleration grid. But to get the necessary 

interpolation accuracy, the grid must be dense enough. On the other hand, a dense 
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grid requires much more memory space, thus an optimal grid size is important. In 

this section, the gravity acceleration variation with respect to ),,( ϕλr  has been 

investigated. 

 

4.2.1 JGM-3 Gravity Acceleration Variation with Respect to ),,( ϕλr  

 

Given the latitude and longitude values ),( ϕλ , the acceleration was calculated at 

different altitudes. Three sets of ),( ϕλ  values were used in this test: (0, 0), (0, 60), 

(0, 80). For a circular or near-circular orbit, only a very thin orbit layer is needed. 

For example, the altitude range of SAC-C is from 7070km to 7090km. Figure 4.1 

illustrates the variation. 

 

Figure 4.1 Gravity acceleration variations ( 2/ sm ) with fixed longitude and latitude 

at altitude between 7070km to 7090km. 

 

Obviously, it is quite reasonable to represent the acceleration using a low-order 

polynomial in the radian ( r ) direction.  

 



 85

Similarly, the test was carried out at a fixed ),( ϕr , allowing the geocentric longitude 

λ  to change from 0 to 359 degree. Three sets of ),( ϕr  values were used in this test: 

(7080, 0), (7080, 60), (7080, 80). Figure 4.2 shows the result. The variation in 

longitude changes dramatically compared to variations in altitude. 

 

Figure 4.2 Gravity acceleration variations ( 2/ sm ) with fixed height and latitude at 

longitude between 0 to 360 degrees. 

 

Furthermore, given three sets of ),( λr : (7070, 0), (7080, 0) and (7090, 0), the 

variation with latitude is shown in Figure 4.3. This is similar behaviour to Figure 4.2. 

It is difficult to model this type of variation because the acceleration changes 

dramatically with different latitude. 
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Figure 4.3 Gravity acceleration variations ( 2/ sm ) with fixed height and longitude at 

latitude between -85 to 85 degrees. 

 

4.2.2 Polynomial Approximation of Radial Gravity Acceleration Components 

 

Based on the previous discussion, it is a quite straightforward to use a polynominal 

function to fit the gravity acceleration values in the height direction. In order to 

precisely fit the height acceleration variations, the accelerations at a certain number 

of sample points must be first calculated. The m-order n-point polynomial fitting can 

be expressed as: 
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For a given ),( ϕλ  three gravitational acceleration components were calculated 

within the height range. Least squares methods are used to estimate the coefficient 

with the samples at n points The order from 3 to 10 was tested at three different 

points: )0,0( oo , )45,0( oo  and )80,0( oo . To avoid loss of precision, the data points 
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were sampled for every 10 ~ 50 metres between the orbital radius 7070km to 

7090km, resulting in 2,000 points. Table 4.1 illustrates the polynomial fitting result 

for different schemes. Figure 4.4 shows the RMS values of the radial gravity 

acceleration polynomial fitting as a function of different orders, while Figure 4.5 

illustrates the maximum errors of the same fittings. 

 

Table 4.1 Height direction gravity acceleration Legendre polynomial fitting results 

at )0,0( oo , )45,0( oo  and )80,0( oo , respectively. 

X Y Z Order Square Abs Max Square Abs Max Square Abs Max 
3 3.26e-18 3.11e-8 2.35e-10 3.39e-21 1.00e-9 7.64e-12 4.30e-20 3.57e-9 2.72e-11 
4 6.34e-24 4.33e-11 3.69e-13 2.26e-25 8.18e-12 6.99e-14 2.28e-24  2.60e-11 2.22e-13 
5 4.06e-29  1.11e-13 9.70e-16 8.18e-30 4.92e-14 4.59e-16 6.67e-29 1.41e-13 1.31e-15 
6 1.21e-30  1.88e-14 1.02e-16 2.28e-34 2.57e-16 2.62e-18 1.21e-33 5.96e-16 6.02e-18 
7 1.39e-30  1.91e-14 1.06e-16 5.48e-36 3.75e-17 2.20e-19 1.08e-35 5.36e-17 3.15e-19 
8 2.77e-30  2.72e-14 2.36e-16 1.10e-35 5.45e-17 4.85e-19 2.13e-35 7.38e-17 6.81e-19 
9 3.10e-30  2.88e-14 3.42e-16 1.22e-35 5.78e-17 6.95e-19 2.37e-35 7.63e-17 9.72e-19 
10 3.85e-30  3.22e-14 2.20e-16 1.51e-35 6.37e-17 4.37e-19 2.95e-35 8.74e-17 6.37e-19 

X Y Z Order Square Abs Max Square Abs Max Square Abs Max 
3 4.33e-18  3.58e-8 2.71e-10 3.24e-20 3.10e-9 2.36e-11 4.58e-19 1.17e-8 8.83e-11 
4 1.07e-23  5.63e-11 4.79e-13 1.46e-24 2.08e-11 1.78e-13 8.62e-25 1.60e-11 1.36e-13 
5 3.92e-29  1.20e-13 9.30e-16 4.78e-29 1.19e-13 1.11e-15 1.65e-30 2.25e-14 1.83e-16 
6 1.34e-30  1.99e-14 1.14e-16 1.17e-33 5.84e-16 5.91e-18 1.67e-31 6.97e-15 4.21e-17 
7 1.51e-30  2.07e-14 1.16e-16 1.19e-35 5.70e-17 3.12e-19 1.90e-31 7.15e-15 4.81e-17 
8 3.04e-30  2.81e-14 2.60e-16 2.45e-35 8.08e-17 7.39e-19 3.69e-31 9.99e-15 8.59e-17 
9 3.40e-30  2.95e-14 3.75e-16 2.73e-35 8.50e-17 1.05e-18 4.14e-31 1.06e-14 1.25e-16 

10 4.25e-30  3.35e-14 2.41e-16 3.40e-35 9.55e-17 6.51e-
019 5.10e-31 1.18e-14 8.67e-17 

X Y Z Order Square Abs Max Square Abs Max Square Abs Max 
3 1.54e-18  2.13e-8 1.62e-10 2.61e-20 2.78e-9 2.12e-11 1.02e-17 5.51e-8 4.17e-10 
4 3.02e-24  2.99e-11 2.54e-13 2.03e-24 2.45e-11 2.10e-13 1.80e-23 7.31e-11 6.21e-13 
5 1.40e-29  6.55e-14 5.71e-16 8.99e-29 1.63e-13 1.52e-15 5.07e-29 1.25e-13 9.99e-16 
6 6.05e-31  1.31e-14 8.15e-17 3.20e-33 9.68e-16 9.84e-18 4.33e-30 3.58e-14 1.98e-16 
7 6.76e-31  1.34e-14 7.98e-17 3.94e-35 1.03e-16 8.47e-19 4.87e-30 3.61e-14 2.39e-16 
8 1.29e-30  1.83e-14 1.47e-16 6.71e-35 1.36e-16 1.24e-18 9.42e-30 5.18e-14 4.61e-16 
9 1.44e-30  1.91e-14 2.20e-16 7.37e-35 1.40e-16 1.57e-18 1.05e-29 5.50e-14 6.56e-16 
10 1.78e-30  2.15e-14 1.59e-16 8.90e-35 1.55e-16 1.17e-18 1.29e-29 6.02e-14 3.89e-16 
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Figure 4.4 RMS error of the radial gravity acceleration ( 2/ sm ) using polynominal 

fitting against the fitting orders. 

 

Figure 4.5 Maximum fitting error of the radial gravity acceleration ( 2/ sm ) against 

different orders. 
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From these figures, it is clear that the polynomial function of 7 or higher is 

appropriate for the radial fitting, achieving a standard deviation of around 217 /10 sm− , 

which is quite a small perturbation source to a satellite. If further simplification is 

needed, a 3rd or 4th order polynomial fit can also achieve 210 /10 sm−  accuracy.  

 

To test the fitting accuracy, 2000 points along the radius between 7070km to 

7090km were randomly generated. The gravitational accelerations from the fitted 

polynomial are compared with the precisely computed ones, and the results are given 

in Table 4.2 and Figure 4.6. 

 

Table 4.2 Statistics of height direction acceleration ( 2/ sm ) recovery error at 

)0,0( oo == ϕλ . 

X Y Z 
Order 

Max Std Max Std Max Std 

3 2.35e-10 4.54e-11 7.64e-12 1.46e-12 2.72e-11 5.22e-12 

4 3.69e-13 6.29e-14 6.99e-14 1.19e-14 2.22e-13 3.78e-14 

5 1.13e-15 1.81e-16 4.55e-16 7.09e-17 1.31e-15 2.03e-16 

6 9.89e-17 2.43e-17 4.96e-18 9.43e-19 7.89e-18 1.21e-18 

7 1.02e-16 2.76e-17 2.43e-18 7.20e-19 2.06e-18 6.03e-19 

8 5.10e-16 1.14e-16 3.78e-18 1.03e-18 3.89e-18 1.03e-18 

9 5.59e-16 1.20e-16 3.99e-18 1.04e-18 4.13e-18 1.04e-18 

10 2.27e-16 5.67e-17 4.58e-18 1.32e-18 4.99e-18 1.44e-18 
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Figure 4.6 Radial gravity acceleration recovery errors at )0,0( oo == ϕλ , plotted 

against different orders of Legendre polynomial fitting. 

 

The results also suggest using a 6th order fitting is adequate. However, if only 

considering 1110− ~ 213 /10 sm−  accuracy, which is in the same order of the Jupiter 

gravitation, 4th order fitting is the optimum choice in terms of both accuracy and 

memory.  

 

4.2.3 3D Gravity Acceleration Interpolation 

 

The Earth gravity acceleration recovery result in altitude direction was satisfactory 

using a simple 6th order polynomial fitting, but the result is unknown if the recovery 

is carried out in the 3D space. In this section a 3D interpolator was implemented 

based on the modified quadratic Shepard method [Robert, 1988a, 1988b]. Through 

extensive testing, it was observed that only 27 /10 sm−  accuracy was achieved using a 
oo 11 ×  gravity grid, and 29 /10 sm−  accuracy was achieved using a oo 5.05.0 ×  grid. 

But the oo 5.05.0 ×  grid requires more than 20 Mbytes memory storage. Furthermore, 
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the 3D quadratic Shepard interpolation algorithm also has a large computational 

burden. Hence this 3D interpolation method is not applicable for onboard processing. 

Further research efforts are therefore required to solve this problem. The concept of 

“pseudo-centre” is proposed in the next section. 

 

4.3 Method of Pseudo-centres 
 

4.3.1 Introduction 

 

Examining gravity acceleration approximation functions is motivated by the on-

going debate between proponents of general perturbations, semi-analytic, and special 

perturbation methods of generating ephemerides for near-Earth satellites. While 

there is no doubt that the special perturbation methods provide the best accuracy for 

most applications, the computational burden for motivates research into alternative 

solution forms. The most complex acceleration model in special perturbations for 

near-Earth satellites .qw6is the gravity model. There have been several attempts to 

improve the computing speed for gravitational acceleration. Among these are model 

truncation, pre-selecting a significant subset of the geopotential coefficients, and 

developing an equivalent “mascon” representation. To date, the alternative solution 

of using stored gravity acceleration tables has been impossible to implement because 

of limited onboard computer memory. 

 

The method to be examined below wrestles with the trade off between storage and 

computation. It was first developed by Hujsak [1996].  The size of the stored tables 

can be minimized by using more complex approximating and interpolating 

algorithms. On the other hand, the computational burden can be reduced by 

accepting a greater storage requirement. A different acceleration representation in 

terms of an earth’s “pseudo-centre” [Hujsak, 1996] is defined, and used together 

with classical polynomial fitting and bi-variate interpolators to gain a computational 

advantage. The final algorithm:  

• reads a large table of coefficients for a particular height, 

• evaluates functions of height at points on a latitude-longitude interpolation 

grid, 
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• interpolates to find pseudo-centre coordinates at a position of interest, and 

• and computes gravity accelerations and partials from the pseudo-centre 

coordinates. 

 

The algorithm provides the full accuracy (if not precision) of the JGM-3 70×70 

gravity model over altitudes from 400-1500km for a computational cost of a 5×5 

models (from typical methods of evaluating the geopotential). The strategy presented 

here achieves that goal with a storage burden of 1.8 Mbytes or less. 

 

4.3.2 Earth Pseudo-centres 

 

Given the Earth-Centreed, Earth-Fixed (ECEF) gravitational acceleration on a 

spacecraft r&& , and using the restricted two-body equation of motion, a pseudo-centre, 

c  can be calculated. Figure 4.7 illustrates this concept. 

 3ρ
µ ρr −=&&         (4.6) 

In Equation (4.6), ρ  is a pseudo-radius to the spacecraft from the pseudo-centre. In 

the above equation r&&  is the non-spherical acceleration calculated using spherical 

harmonic coefficient expansion. Now the actual radius to the satellite is the pseudo-

radius plus the pseudo-centre. A pseudo-centre is a vector from the centre of the 

Earth to where the centre of the Earth would need to be if the non-spherical 

acceleration acting on the satellite is equal to the restricted two-body acceleration 

acting on the satellite: 

 ρrc −=         (4.7) 

By definition, 

 ρ=ρ , and ρρ ˆρ=        (4.8) 

Also, since the pseudo-radius vector is in the opposite direction of the acceleration: 

 
r
rρ
&&

&&
−=ˆ         (4.9) 

Therefore, substituting Equation (4.9) into Equation (4.7) yields: 

 ρrc ˆρ−=         (4.10) 

Now, dot product both sides of Equation (4.6) with ρ̂ : 
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 2
1
ρ

µ−=r&&         (4.11) 

Therefore: 

 
r&&
µρ =         (4.12) 

Leading to the result: 

 ρ
r

rc ˆ
&&

µ
−=         (4.13) 

This pseudo-centre is simply the mechanization of the concept that the Earth appears 

as a point mass. Given the correct value for c , Equation (4.6) is exact. This method 

for finding approximating functions and interpolated representations for c which are 

sufficiently accurate to be useful and simultaneously is computationally efficient. 

These approximations can be substituted into Equation (4.6) to recover the 

accelerationr&& . If r&& is computed with all perturbations and the two-body acceleration, 

then analysis shows that km15<c for kmh 100≥ and km0→c as ∞→h . If the 

0,2C term is omitted from Equation (4.6) then m250<c . This distinction will 

become important later. 

 

 
Figure 4.7 Concept of Earth pseudo-centres. 
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4.3.3 Acceleration Formulation for Pseudo-centres Independent of 02 ,C  

 

Having noted the storage benefit of omitting 0,2C  accelerations from the pseudo-

centre definition, we introduce a new definition for the pseudo-centre. We simply 

add the 0,2C acceleration to the right-hand side of Equation (4.6), and since the 0,2C  

acceleration appears on both sides of the expression, then c  is independent of 0,2C : 

0,23
0

0 rρr &&&& +−=
ρ

µ        (4.14) 

where 0,2r&&  is the acceleration due to 0,2C . Let: 

3
0

0
0,20 ρ

µ ρrrr −=−= &&&&&&        (4.15) 

where 

0

0ˆ
r
rρ
&&

&&
−= , ρ

r
rρrρrc

0

ˆˆ
&&

µρ +=+=+=     (4.16) 

We have the acceleration due to the 0,2C  as: 
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and 3
20,2 10388150826269256.1 −×−=−= JC (JGM-3), The computational burden 

for Equation (4.17), depending on code efficiency, is 33 multiplication operations, 

11 addition operations, and one square root. Allowing 5 multiplications and 4 

additions for the square root, the totals are 38 multiplications and 15 additions. 

 

4.4 Radial Pseudo-centres Polynominal Fit 

 

As discussed in Section 4.2, for a given ),( ϕλ  the pseudo-centres within the height 

range are fitted to give a set of coefficients for recovery. Different order and height 

increment are tested to give the best fitting scheme. The standard spherical harmonic 
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calculation for gravitational acceleration can be expressed as in Figure 4.7. 

Remember we set the 0,2C = 0, as discussed above. 

 

To maximize simplification for onboard computing, all the procedures in the dashed 

rectangle in Figure 4.8 are included in the acceleration approximation. Thus the 

output from the interpolation can be directly added to the perturbation acceleration.  

 

Again, polynomial order from 3rd to 10th was tested, and the height increment was 

from 50m to 4km in the 20km altitude range of SAC-C, that is 7070km to 7090km. 

The interpolator can be expressed as: 

 
minmax

min

hh
hh

x
−

−
=        (4.18) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Gravitational spherical harmonic calculation flow chart. 

 

4.5 Bi-variate Pseudo-centres Interpolation on a Sphere 
 

4.5.1 Pseudo-centre Interpolation on a Sphere at a Common Height 

 

The Earth’s surface is naturally subdivided into “rectangles” in latitude and 

longitude, with constant increments in latitude ( φ∆ ) and variable increments in 

longitude ( λ∆ ). Polynomial coefficients for the height function are stored for each 
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vertex of the “rectangle”. This subdivision makes indexing into the array of stored 

points an easy (and computationally efficient) exercise. 

 

There are a variety of two-dimensional interpolation methods. The criteria for 

selecting an interpolation algorithm prioritizes computational speed and accuracy 

(versus cσ ), with storage requirements being treated as a secondary issue. These 

criteria practically eliminate all higher-order interpolators where first and second 

partial derivatives are used [Press, et al., 1992] to describe the variations in the 

dependent function ( )h,,λϕc over the domainϕ  and λ . 

 

Ultimately the choice reduces to three bi-variate interpolation techniques, the three-

point, four-point, and six-point methods listed in Abramowitz and Stegun [1992], 

from which the six-point bi-variate interpolation formula was selected: 
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where 

 
0λλ

λ
−

=
p

pp  and 
0φφ

φ
−

=
p

pq      (4.20) 

We have 10 <≤ p and 10 <≤ q , and φ∆ and λ∆ and a convenient grid in latitude and 

longitude. Figure 4.9 illustrates this concept. 
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Figure 4.9 Six-point bi-variate interpolation at a common height. 

 

Equation (4.24) requires 20 multiplication operations and 14 addition operations for 

each component c , or 60 multiplications and 42 additions for all three components. 

Computing p and q adds one additional multiplication and two additional operations 

each, for a total of 62 multiplication and 46 addition operations.  

 

A parametric study was performed where the size of the longitude grid was varied to 

determine the trade-off between accuracy and the interpolation grid size ( φ∆  and 

λ∆ ). Values of φ∆ studied included °° ≤∆≤ 5.14.0 φ and the respective longitude 

increments φ∆  = λ∆ / φcos , with λ∆ constrained to be less than °5 near the poles. 

A representative, but not exhaustive, search over the surface of the Earth and over 

heights between 100km and 1500km was performed. At each position ( )h,, 00 λφ  a 

set of six interpolation points were identified: 
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The full acceleration due to JGM-3 was computed for each interpolation point using 

Equation (4.1), the corresponding pseudo-centres were computed, and the pseudo-

centre components were substituted into Equation (4.24). Accuracy assessment was 

made for p = 0.5, q = 0.5. 

φ∆

λ∆

( )00,φλ
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In general, the latitude grid φ∆  depends on height. At h=100km smaller increments 

( °=∆ 5.0φ ) are required for ( ).2.<icE . However, at ≥h  400km larger increments 

)0.1( °=∆φ suffice. 

 

4.5.2 Gravity Grid 

 

The grid size is decided by the satellite trajectory that is projected on the Earth-fixed 

frame. Of course, this grid must cover the entire possible trajectory that the satellite 

would go through.  

 

Table 4.3 Spacecraft trajectory ranges expressed in the ECEF frame. 

 Radius Range 
(km) 

Latitude Range 
(degree) 

Longitude Range 
(degree) 

T/P 7714 ~ 7718 -66 ~ 66 0 ~ 360 
FEDSAT 7175 ~ 7186 -85 ~ 85 0 ~ 360 
SACC 7075 ~ 7088 -82 ~ 82 0 ~ 360 
CHAMP 6771 ~ 6808 -87 ~ 87 0 ~ 360 

 

To achieve a satisfied interpolation result, a dense grid is needed. From the results of 

Section 4.2 and the last section, we can see that the acceleration depends more on the 

latitude than the longitude because the solid Earth is approximately symmetrical 

around the rotational axis. Thus we can use a larger grid in the longitude direction 

and a smaller one in the latitude direction. Furthermore, larger increments of 

longitude as latitude increases can reduce storage requirements. Instead of using a 

single grid size, we divided the whole Earth’s surface into several bands with 

different grid sizes. In order to simplify indexing into the arrays holding the pseudo-

centre coefficients, there is an overlap between sets of pseudo-centres coefficients. 

Only single precision (4 bytes) floating point values were used. The number of 

storage bytes needed for each latitude and longitude is calculated by: 

 Polynomial order × 3 pseudo-centre components × 4 bytes 
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Table 4.4 SAC-C gravitational acceleration approximation oo 11 ×  grid with order = 4. 

 latitudes λ∆   
# lons 

 
# lats 

 
# bytes each 

total 
bytes 

1 oo 73~85 −−  3.0 122 13 48 76,128 

2 oo 59~75 −−  2.0 182 17 48 148,512 

3 oo 47~61 −−  1.5 242 15 48 174,240 

4 oo 49~49−  1.0 362 99 48 1,720,224 

5 oo 61~47  1.5 242 15 48 174,240 

6 oo 75~59  2.0 182 17 48 148,512 

7 oo 85~73  3.0 122 13 48 76,128 
 2,517,984 

 

4.5.3 Experiment Result 

 

Previous experiments suggest a 109 10~10 −− m interpolation accuracy for the pseudo-

centre position in the altitude direction. Then a 97 10~10 −−  m pseudo-centre 

accuracy can be achieved after the final sphere interpolation. The acceleration then 

can be recovered through Equations (4.13) and (4.22). In this section, the 

acceleration was recovered using this method at three small oo 5.05.0 × zones: 

 I: kmhkmh 1,7080~7070;10~0;20~0 =∆=== oooo ϕλ   

 II: kmhkmh 1,7080~7070;60~50;20~0 =∆=== oooo ϕλ  

 III: kmhkmh 1,7080~7070;84~74;20~0 =∆=== oooo ϕλ  

 

The results were compared to the original calculated value.  
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Figure 4.10 Gravity acceleration interpolation accuracy compared with the 

rigorously calculated value. 

 
Figure 4.11 Computing time compared with the spherical harmonic method. 
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The gravity acceleration recovery error is around 21614 /10~10 sm−− , of the order of 

the gravity attraction from the planet Neptune. On the other hand, the computational 

burden is much less than the traditional method using a 7070× Earth gravity model. 

 

4.6 Accuracy Analysis for Complete Algorithms 
 

There are two ways to assess the end-to-end accuracy of the algorithm. One way is to 

implement it in ephemeris integration and to compare ephemeris accuracies. The 

second method is a systematic search over the Earth, evaluating the acceleration 

accuracy at a great number of latitudes, longitudes, and heights, and comparing the 

approximation to that from the complete model. Having tested the latter in the 

previous section, this section will present the results from the first type of test. 

 

4.6.1 Accuracy Analysis 

 

A test was implemented to step through all longitudes and latitudes, on a 

representative grid, and at each selected longitude )( 0λ and latitude )( 0φ to define a 

local grid of six points, as described earlier. This analysis was performed once for an 

interpolation domain of °=∆ 5.0φ ， φφλ cos/∆=∆ (constrained to °<∆ 5λ and 

again for °=∆ 0.1φ . The search grid over the northern hemisphere of latitude 

}{ °°−∈ 85,850φ and longitude }{ °°∈ 5.359,...,00λ . Not all points on the Earth were 

evaluated. The evaluation grid was °5 in latitude and °10 in longitude. 

 

In general the worst-case error statistic (Equation (4.18)) at any test point 

),( 00 λφ was found at a height of 7090km, where JGM-3 errors are smallest, and 

therefore more difficult to satisfy. Worst-case error statistics for ( )icE  were 

generally less the 0.2 over the entire northern hemisphere. In a few cases where 

( ) 5.0≈icE , it appears that the least squares solution for ja and jb in Equation (4.22) 

converges to a relative minimum instead of the absolute minimum. If the accuracy 

criterion is ( ) 1.<icE , then °=∆ 5.0φ is required. However, relaxing the criterion to 

( ) 2.<icE , allows °=∆ 0.1φ , which greatly reduces storage requirements. 
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4.6.2 Orbit Integration Using the Gravity Acceleration Approximation Method 

 

From Section 4.5.3 we can see that the recovered gravitational acceleration is at the 
21614 /10~10 sm−−  level. This error is a high-order perturbation and can be neglected 

for most applications. However, the method must be validated through a real orbit 

integration test. This is critical because the cumulative effect of random errors 

introduced by these approximations is not known. 

 

As discussed in Chapter 3, the simplified method achieves metres level accuracy for 

short-arcs, compared to using a full model. In this test we replace the truncated 

3030×  gravity model with the proposed gravity acceleration method. A 6th order 

polynomial generated oo 11 ×  gravitational acceleration grid for SACC was used. 

Figure 4.12 illustrates the accuracy of 1 day’s orbit integration using a 

3030× gravity model and the gravity approximation method, with the results 

compared to the 7070×  full model. We can see great improvement in orbit 

integration. 

 

In addition, we compared the computational burden of orbit integration with 7070×  

gravity model, with 3030× gravity model and the gravity approximation method. 

Figure 4.13 illustrates the result. 

 

We found that the Gravity Acceleration Approximation Method reduced computing 

time by around 800% compared to the 7070×  gravity model, with a small memory 

usage increase. 
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Figure 4.12 Comparison of orbit integration accuracy between Gravity 

Approximation Method (GAF) with the traditional method. 

 

 
Figure 4.13 Comparison of computational burden between Gravity Approximation 

Method (GAF) with the traditional method. 
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4.7 Computional and Storage Requirements 
 

4.7.1 Computional Burden 

 

The computational burden for each step in calculating gravity acceleration discussed 

in each section above is now summarized in Table 4.5 

 

Table 4.5 GAF method calculation burden summary. 
Calculation Multiplications Additions 

C20 recovery (Equation 4.18) 38 15 
Six-point interpolation (Equation 4.19) 62 46 
4th order polynomial (Equation  4.16) 127 110 

Total 227 171 
 

This computational burden is comparable to the computational overhead of a 

55× acceleration model, with a margin for computing indices into the tables, loop 

indexing, and decision functions. The following were calculated from one 

programmer’s implementation of Equation (4.1) and the associated support 

calculations (including recursive generation of Legendre polynomial evaluations): 

 

Table 4.6 Calculation burden summary for spherical harmonic calculation. 
Degree and Order Multiplications Additions 

4×4 184 134 
5×5 236 198 
6×6 356 286 
8×8 576 438 

12×12 1160 902 
30×30 6164 4970 

 

These calculations assume that λλφφλφ sin,cos,sin,cos,,,r are available as 

common input to both methods and that conversion of the output accelerations 

between the ECI and ECEF frame is external to both methods.  

 

4.7.2 Storage Requirements for Complete Algorithm 

 

The storage strategy has a direct bearing on the storage penalty for the Gravitational 

Acceleration Approximation Method implementation. It also has a direct bearing on 

the RAM requirements for exploiting this algorithm. The following seeks to take 
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advantage of a larger bin size in longitude ( )λ∆  at higher latitudes, while holding the 

latitude bins fixed at °5.0 or °0.1 , as studied above. 

 

The storage strategy identifies broad latitude bands within which the longitude bin 

size ( )λ∆ is constant. These bands necessarily overlap because the interpolator uses 

three latitude values ( )φφφφφ ∆+∆− 000 ,, . Furthermore, to reduce the complexity of 

computing an index into the table, the longitude grid extends from λ∆− to (or 

beyond) °360 . When the longitude increment λ∆ exactly divides °360 , then the 

longitude grid terminates at °360 , otherwise the longitude grid extends one point 

beyond °360 . 

 

There is only one point at either pole, and the equator is duplicated in adjacent 

northern hemisphere and southern hemisphere tables. This is because the increment 

to latitude ( )φ∆  is negative in the southern hemisphere. Again it was decided to 

duplicate the equator (and one latitude increment) in these tables to reduce 

complexity in indexing the table. 

 

The polynomial coefficients ja and jb in Equation (4.22) are stored as “single 

precision” floating point variables (unformatted). The storage penalty for each 

( )00 ,λφ in the table is:  

3 components of pseudo-centre ×  4 coefficients ×  4 bytes = 48 bytes 

This storage scheme is not optimized for latitude band selection and some additional 

saving are possible.  

 

4.8 Summary 
 

An alternative method to calculating the Earth gravity acceleration has been 

validated in this chapter. Instead of calculating the harmonic coefficient using the 

recursive algorithm, an Earth pseudo-centre grid was generated on the ground and a 

simple two-step interpolator was used to recover the gravity acceleration on-the-fly. 

Extensive testing was shown that: 
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• The Earth gravity acceleration changes smoothly in the altitude direction and 

can be easily recovered from a grid using 3~6 order polynomial interpolation; 

with the acceleration accuracy being around 21816 /10~10 sm−− . 

• The Earth pseudo-centre can be recovered at the 109 10~10 −− m level in the 

altitude direction using a similar 3 ~ 6 order polynomial interpolation; while 

a final 97 10~10 −−  m accuracy can be achieved after the spherical 

interpolation; 

• The Earth gravity acceleration can be recovered at 

the 21614 /10~10 sm−− accuracy level using a oo 11 ×  pseudo-centre grid. The 

computational burden is much less than for the conventional method. 

• Using the Gravity Acceleration Approximation Method, the computational 

burden of orbit integration is equivalent to that of a 55×  gravity model, but 

with the accuracy of a 7070×  model. 

 

This method shows a great promise for onboard orbit determination. Though the 

results are very encouraging, more improvements can be made: 

• There are alternatives in force model formulation which can be used to make 

special perturbations more computationally competitive, with semi-analytic 

and analytic techniques. This development is but one example. Elementary 

techniques have been used to generate a hundred-fold improvement in 

gravity acceleration computational efficiency, achieving 7070× accuracy for 

the computational burden of a 55×  model, with a storage penalty of 2.5 

Mbytes. With some additional work there should be additional savings in 

both computational efficiency and in storage requirements. 

• The storage penalty of 2.5 Mbytes is still not optimal. There are savings in 

simply using more latitude bands (e.g. smaller incremental changes in λ∆ ). 

An investigation of other functional forms is planned, including continued 

fractions, in an effort to reduce the number of coefficients to be stored. 

• The computational burden is not optimal. The possibility of other function as 

forms in place of quotients of polynomials hints at other efficiencies. 
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Chapter 5 

Quality Control and Improvement of Onboard 

GPS Measurement Processing 

 

 

 

The quality of onboard GPS measurements and navigation solutions is normally 

worse than those obtained on the ground due to the harsh observation conditions in 

space. As a consequence, great care has to be taken to minimize the degradation of 

the measurement quality. This mostly concerns the process of outlier detection. In 

addition, if we take the GPS measurements at every sample epoch of 1 ~ 10 seconds 

directly to form the observation equations, the nominal orbit and partial derivations 

need to be generated at these epochs, which in turn results in a heavy computational 

load. To improve this situation, a sliding-window carrier-phase smoothing filer has 

been designed to generate a smoothed observable every several minutes. With no 

Selective Availability (SA) and an improvement of the broadcast ephemerides, this 

technique is reasonable and feasible. This chapter will focus on outlier detection and 

phase smoothing procedures to facilitate clean and compacted GPS data for efficient 

onboard orbit estimation. 

 

5.1 GPS Code Measurement Models 
 

GPS measurements include code-based pseudo-ranges, which are computed from 

measured transit time, and carrier phase-based ranges. Since these ranges are biased 

by satellite and receiver clock errors and other errors, they are called “pseudo-

ranges”. In this context, onboard orbit determination is based on pseudo-range data, 

regardless of smoothing with carrier-phase or not. In the following subsections, we 

examine the error sources of the GPS code measurements. 
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5.1.1 Basic Zero-difference Code Observation Equations 

 
The code measurement k

iP from a spaceborne receiver to a GPS satellite can be 

modelled as: 
k
iant

k
antgps

ik
ion

ik,
rel

kkk
i εtCtCρP +∆+∆+∆+∆++−= ρρρρδδ _

,  (5.1) 

where 

i = subscript identifying the 1L  or 2L  frequency 

k = subscript identifying different GPS satellite 
kρ  = geometic range between the GPS satellite k and the receiver 

C  = speed of light 
kδt  = GPS satellite’s clock error 

δt   = receiver’s clock error 
ik,

relρ∆   = relativistic effect 

ik
ion

,ρ∆   = ionospheric delay 

k
antgps _ρ∆ = GPS satellite antenna phase centre offset 

antρ∆  = Spacecraft GPS antenna phase centre offset 

k
iε  = random measurement noise of range 

 

5.1.2 Ionospheric Delay 

 

The ionosphere is a region of the Earth’s upper atmosphere, approximately 100km to 

20,000km above the surface, where electrons and ions are present in quantities 

sufficient to affect the propagation of radio waves. The path delay will be 

proportional to the number of electrons along the slant path between the satellite and 

the receiver, and the electron density distribution varies with altitude, time of day, 

time of year, solar and geomagnetic activity, and the time within the 11 year solar 

sunspot cycle. The magnitude of the ionospheric path delay depends on the 

frequency of the radio signal. The ionospheric bending on 1L  GPS measurements 

will vary from about 0.15m to 50m [Clynch & Coco, 1986]. However, more accurate 

corrections can be made by using the dual frequency ionosphere-free combination: 
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where 1f  and 2f are the frequency for the 1L  and 2L  carrier waves, respectively. 

 

5.1.3 Relativistic Effect 

 

The relativistic effects on GPS measurements can be summarized as follows. Due to 

the difference in the gravitational potential, the satellite clock tends to run faster than 

the ground station’s [Spilker, 1978; Gibson, 1983]. These effects can be divided into 

two parts: a constant drift and a periodic effect. The constant drift can be removed by 

offsetting the GPS clock frequency a little lower before launch to account for that 

constant drift. The periodic relativistic effects can be modelled for a high-low 

measurement as: 

)(2
ggsssrel C

vrvr ⋅−⋅=∆ρ       (5.3) 

where 

srelρ∆  = correction for special relativity 

C = speed of light 

ss ,vr  = the position and velocity of the LEO satellite or tracking stations 

gg vr ,  = the position and velocity of the GPS satellite 

The coordinate speed of light is reduced when light passes near a massive body 

causing a time delay, which can be modelled as [Holdridge, 1967] 

)ln()1( 2 ρ
ργρ

−+
++

+=∆
rectr

rectre
grel rr

rr
C

GM      (5.4) 

where  

grelρ∆  = correction for general relativity 

γ  = the parametreized post-Newtonian (PPN) parametre ( γ  =1 for 

general relativity) 

eGM  = gravitational constant for the Earth 

ρ  = the relativistically uncorrected range between the transmitter and 

the receiver 

trr  = the geocentric radial distance of the transmitter 
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recr  = the geocentric radial distance of the receiver 

The total relativity correction is: 

 relρ∆ = srelρ∆ + grelρ∆        (5.5) 

 

5.1.4 GPS Satellite Antenna Phase Centre Offset 

 

Satellite antenna phase centre offsets must be dealt with appropriately. These offsets 

are given in the same satellite-fixed coordinate system that is also used to express 

solar radiation pressure. Starting on 1998-Nov-29 (GPS Week 986, day 0) the IGS 

products incorporated the antenna phase centre offsets given in Table 2.1. The origin 

of the coordinate system is at the satellite's centre of mass, the k-axis points toward 

the Earth centre, the j-axis points along the solar panel axis, the i-axis completes the 

right-handed coordinate system and lies in the Sun-satellite-Earth plane.  

 

Table 5.1 GPS satellite antenna phase centre offset values adopted by IGS. 
Block II/IIA: (0.279m, 0.000m, 1.023m) 

Block IIR: (0.000m, 0.000m, 0.000m) 
 

The offset then can be described in Earth-Centred and Earth-Fixed (ECEF) frame as: 

 T1O)k,j,i(∆ρ −= ˆˆˆ
_ antgps       (5.6) 

where  )k,j,i ˆˆˆ(  is the unit vector of the coordinate system. O  is the antenna phase 

centre offset given in Table 5.1. 

 

5.1.5 LEO GPS Receiver Antenna Phase Centre Offset 

 

For the GPS receiver onboard a satellite, the antenna offset also must be dealt with. 

The orbit integration equations are solved for using the inertial, Cartesian J2000 

system. That means the satellite trajectory is represented by the movement of the 

mass centre of the satellite. To account for the GPS antenna offset, the offset must be 

transferred from different spacecraft coordinate systems to the inertial system. The 

spacecraft coordinate system includes Height-Crosstrack-Alongtrack (HCL) system, 

Earth-Probe-Sun (EPS) system, UVW system, etc. This depends on different 

missions. 
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Table 5.2 Spacecraft GPS receiver antenna phase centre offset values. 
 

Mission Coordinate System Antenna offset (mm) 
Topex / Poseidon Body-fixed HCL system (4700.0, 1947.0, 41.0) 

SACC Body-fixed HCL system ( 810.8, -345.0, -29.4) 
CHAMP Body-fixed HCL system (-1488.0, 0.0, -392.0) 
FedSat Body-fixed HCL system (38.0, 24.0, 16.0) 

 

5.1.6 Single-difference Code Observation Equation 

 

The receiver’s clock error δt  is the biggest error source in Equation (5.1). The clock 

in a receiver is not as accurate as the one in the GPS satellite. A bias of 0.001 

seconds equals approximately 300 kilometres error in length units. However, this 

error can be removed if we take a single-difference between different GPS satellites 

at the same epoch. In this way, the receiver clock is removed from the observable. 
j

i
k
i

k,jjkk,jj
i

k
i

k,j
i εε∆E)δttC(∆ρPP∆P −++−+=−= δ   (5.7) 

where: 
jk

iP ,∆  = difference between two measurements from satellites k and j 
jk

i
,ρ∆  = difference between two geometric distances 

jk tt δδ , = clock error for satellite k and j 
jkE ,∆  = residual system error 

 j
i

k
i εε −  = measurement noise 

On the other hand, the measurement noise j
i

k
i εε −  will be 2 times larger than the 

zero-differenced data. 

 

5.2 Outlier Detection 
 

The proposed outlier detection method is a recursive filter that processes the un-

differenced GPS measurements. The main problem when processing un-differenced 

GPS data is to reliably and automatically detect outliers in code observations. The 

data cleaning of differenced GPS data is much easier because many common error 

sources may be removed by forming the differences, in particular receiver and 

satellite clock errors. However, several algorithms have been developed which seem 

to be reasonably successful in “cleaning” zero-differenced GPS data. Similar to the 

TruboEdit program of GIPSY, the developed algorithm is suitable for the onboard 

short-arc filter. 
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The algorithm requires the use of dual-frequency code and phase observations. The 

major problem with this approach resides is that it depends heavily on the quality of 

the code observations. In particular, the noise of the code observations is assumed to 

be below 0.5 the wide-lane cycles, i.e., 43cm. This requirement is easily fulfilled if 

anti-spoofing (AS) is not active. For most state-of-the-art geodetic receivers the 

noise of the code observations under those conditions is at the 20cm level.  

 

Each satellite is processed one-by-one in the following steps: 

(1) Basic screening to delete the large outliers and delete short phase connect 

arcs. 

(2) Screening of wide-lane linear combination for outliers and cycle slips. 

(3) Screening of the difference between the code and phase ionosphere-free 

linear combinations. This screening is performed to remove bad 

observations, which were accepted in the wide-lane screening. 

 

5.2.1 GPS Observation Linear Combinations 

 

To process the un-differenced GPS data, the most useful method is to form different 

linear combinations using basic carrier phase and / or code measurements. The code 

and phase linear combination can be expressed as: 

 21, LnLmL nm ∗+∗= , 21, PnPmP nm ∗+∗=     (5.8) 

Theoretically we can form an infinite number of these “artificial” observables with 

different n and m, but only very few of them are actually useful for the purpose of 

outlier detection, ambiguity fixing and reducing the ionospheric effect. Three 

properties of linear combination signals are the key points: the wavelength, 

ionospheric effect and the noise level. 

 

The linear combinations of 1L  and 2L GPS signals are usually performed to assist the 

cycle slip detection and cycle ambiguity resolution processes, and certain 

combinations can also be used to eliminate the first-order ionospheric effect. The 

linear combination of the phase’s signal, which preserves the integer nature of the 

cycle ambiguity, can be formulated as follows (in cycle units): 

 21, φφφ ∗+∗= nmnm        (5.9) 
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And the linear combination in length unit can be formulated as: 

 
21

2211
,,,

**
fnfm

LfnLfmfL nmnmnm ∗+∗
∗+∗

=∗= λ     (5.10) 

The basic properties of the linear combination signal can be expressed as: 

 Frequency:  21, fnfmf nm ∗+∗=      

 Wavelength:  21, ///1 λλλ nmnm +=    (5.11) 

 Cycle Ambiguity: 21, NnNmN nm ∗+∗=  

The linear combination will not change the magnitude of the frequency-independent 

errors and biases, such as ephemeris error and tropospheric bias, but it will change 

the magnitude of the frequency-dependent errors and biases, such as ionospheric bias, 

noise, and multipath. The magnitude of the ionospheric effect on the linear 

combination is: 

 
21
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dionfndionfmdion nm ∗+∗
∗+∗

=     (5.12) 

where 1dion  and 2dion  are the magnitude of ionospheric effects on the 1L  and 

2L signals, respectively. The first-order ionospheric effects in length unit can be 

expressed as: 

 2
11 / fCdion = , 2

22 / fCdion =      (5.13) 

where the C is a constant whose value is dependent on Slant Total Electron Content. 

Thus the Equation (5.11) can be written as: 
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The magnitude of the ionospheric effect on the linear combination can be written as 

function of the magnitude of the ionospheric effect on 1L  signal as: 
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∗=∗=    (5.15) 

where the isf is the Ionospheric Scale Factor. 

 

Furthermore, the linear combination process will also alter the noise level of the 

observations. If the noise in the 1L  and 2L  phases are characterized by the same 
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standard deviation in cycle units φσ , then the standard deviation of the linear 

combination phase in length units )( ,mnLσ  can be written as: 

 φσλσ ∗+∗= 2/122
,, )()( nmL nmnm      (5.16) 

Based on the above equation, the noise level of the linear combination phase can be 

written as a function of the noise level of 1L  phase in length units: 

 
12

2/122
2

1,
)(),()(
λλ

λσσ
∗+∗

+∗
=∗=

nm
nmnsfLnsfL nm    (5.17) 

where the nsf is the Noise Scale Factor. 

 

Based on the above analysis, Figures 5.1 and 5.2 illustrate the wavelength, 

ionospheric scale factor and noise scale factor for different linear combinations. 

Table 5.3 lists some commonly used linear combinations. 

 
Figure 5.1 GPS observation linear combination property: wavelength. 



 115

 
Figure 5.2 GPS observation linear combination property:  Ionospheric & Noise 

Scale Factors. 

 

Table 5.3 Some linear combinations of the GPS phase observables. 
m n Wavelength (cm) isf nsf description 
-7 9 1465.3 350.4 877.9  
-3 4 162.8 18.2 42.8 Double wide-lane 
-2 3 56.4 5.5 10.7  
-1 2 34.1 2.8 4.0 Semi wide-lane 
0 1 24.4 1.6 1.3 L2 signal 
1 -1 86.2 -1.3 6.4 Wide-lane 
1 0 19.0 1.0 1.0 L1 signal 
1 1 10.7 1.3 0.8 Narrow-lane 
2 -2 43.1 -1.3 6.4 Half wide-lane 
4 -3 11.4 0.09 3.0 Narrow-lane 
5 -4 10.1 -0.07 3.4 Narrow-lane 

 

5.2.2 Basic Screening 

 

At this stage, unreasonable range and phase errors, such as negative range 

measurement and very big range values, are deleted. Normally these errors are 

caused by receiver malfunction. A set of criteria is established for different missions. 
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The most useful ones are maxP  and minP , based on the geometry between spacecraft 

and GPS satellite: 

 
clock
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          (5.19) 

Using an amplifier factor of 1.2 and 0.8 for maxP  and minP , respectively. With a max 

of 300km clock error, we can derive the information in Table 5.4. 

 

Table 5.4 Screening criterion for the P-code measurements. 

 maxP (m) minP  (m) 
TOPEX 36,500,000 14,800,000 
SACC 35,000,000 15,300,000 

CHAMP 34,300,000 15,900,000 
FEDSAT 35,200,000 15,200,000 

 

The ionospheric delay can be expressed as the difference of the two P-codes:  

 12 PPion −=∆ρ         (5.20) 

If the magnitude of any ionosphere combination is larger than a given value, both 1P  

and 2P will be deleted. The big value in this combination will either suggest a large 

ionospheric delay or simply an outlier. We can delete them in both cases. Typically a 

15m value is used in our experiments. 

 

Furthermore, another strict screening criterion is to delete any data within short 

phase-connect arc which is shorter than a given value. Experimentally we have 

found that an arc less than 1 ~ 2 minutes will lead to lots of outliers. A very short 

phase-connect arc is also not very useful in the phase smoothing process. But more 

attention should be paid when the measurement sample rate and the onboard GPS 

operational mode is unusual. 

 

5.2.3 Data Screening Based On Wide-lane Combination 

 

The wide-lane combination, which was called the Melbourne-Wübbena combination 

in early GPS literature, is a linear combination of both carrier-phase ( 1L  and 2L ) and 

P-code ( 1P  and 2P ) observables [Wübbena, 1985; Melbourne, 1985]. This 
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combination eliminates the effects of the ionosphere, geometry, clocks and the 

troposphere. It comes from the wide-lane combination of both code and phase 

measurement. The phase of the wide-lane combination is defined by the phase 

difference 21 ΦΦ − (in cycles). Hence the wide-lane phase delay can be expressed as: 

( ) wwionwww bffffd
ff

LfLf
L λρλ +−+=

−
−

=Φ−≡ 2
2

2
121

21

2211 /  (5.21) 

where the wide-lane wavelength is ( ) cmffcw 2.86/ 21 ≈−≡λ , and the wide-lane 

bias is 21 bbbw −≡ , which is an integer number because both 1b and 2b are integers. 

Then the code wide-lane combination 
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That is, by subtracting Equation (5.20) from (5.19), the Melbourne-Wübbena 

combination can be expressed as: 
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=    (5.23) 

and we obtain the wide-lane bias 

( )ww
w

w PLb −=
λ
1        (5.24) 

Apart from the wide-lane ambiguity the remaining signal should be pure noise, with 

an RMS error of approximately 0.7 times the RMS of the code observations on the 

1L  frequency. If the noise of the Melbourne-Wübbena combination has an RMS 

error below 0.5 wide-lane cycles (43cm) it is almost a trivial task to detect all cycle 

slips and outliers. Only very few epochs are needed to estimate the wide-lane 

ambiguity, and hence jumps and outliers can easily be detected. Of course, only the 

difference between the cycle slips on the two frequencies is detected ( )21 nnnw −= . 

Note that in the very unlikely case where the integer number of cycle slips on the 

two frequencies is identical (i.e., 21 nn = ) no cycle slip will be detected ( )0=wn . 

 

The best way to improve the reliability of screening data is to generate arcs as long 

as possible. An arc is defined by specifying a minimum number of continuous 

observations and a maximum time for data gaps. Typical values are a minimum of 
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10 data points per arc and a maximum of 3 minutes without observations before 

starting a new arc. 

 

An onboard filter calculates time-averages of wb both before and after a cycle slip or 

outlier, and the difference is required to be close to an integer. That is, an a priori 

RMS scatter σ  of 0.5 wide-lane cycles is assumed, and the algorithm sequentially 

updates the averaged wide-lane biases and the RMS scatter, using the following 

recursive formulae: 
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where 
iwb

)
is the mean wide-lane bias, and i is the current number of data points in the 

data arc. Subsequent epoch estimates 
1+iwb

)
are required to lie within iσ4 of the 

running mean
iwb

)
. The filter deletes isolated outliers, and any two consecutive 

outliers within one cycle may indicate a cycle slip. Then, beginning with these two 

points, it starts a new average and continues time averaging until a new potential 

cycle-slip is discovered, and so on. 

 

The critical data length required for a successful wide-lane phase connection is 

dependent on the pseudo-range precision and multipath. For currently available 

space GPS receivers it is as little as one minute before and after each cycle slip and 

outlier. 

 

5.2.4 Data Screening Based On Ionosphere-Free Combination 

 

We found that sometimes the data was not cleaned successfully due to systematic 

errors in the Melbourne-Wübbena combination. These systematic errors are most 

likely caused by the filtering and smoothing procedures employed in the receivers. 

Therefore, an additional data-screening step was added to the program. In this step 

we build the difference between ionosphere-free linear combinations for the phase 

and code observations: 
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As in the case of the Melbourne-Wübbena combination this linear combination 

should consist of noise only. The disadvantage is the amplified noise (about 3 times 

the noise of the 1P  observations). The noise is thus about 4 times larger than the 

noise of the Melbourne-Wübbena combination. Nevertheless, the check is useful for 

removing errors caused by systematic effects. The check consists of an outlier 

rejection scheme, which is very similar to the one used for screening the Melbourne-

Wübbena combination. The starting value for the maximum RMS is larger (typically 

1.6 ~ 1.8 metres), to account for the higher noise of these observations. 

 

5.3 Phase Smoothing Filter 
 

5.3.1 Methodology 

 

The application of the above procedures ensures the code and phase observations 

have been quality cleaned out. This enables us to now smooth the code observations, 

using carrier phase observations, for the continuous data arcs. For code smoothing it 

was decided to actually replace the code observations in a clean observation arc by 

the phase observations shifted by the mean difference code-phase in the arc. Of 

course, we have to account for the opposite sign of the ionospheric effect for the 

code and phase observations. 

 

Briefly, carrier-phase-aided smoothing simply averages the point-by-point difference 

between the continuous phase measurements (which are extremely precise but have 

an arbitrary bias) and the simultaneously acquired pseudo-range measurements 

(which are far noisier but unbiased), thereby smoothing down pseudo-range noise 

over the averaging period to produce a precise estimate of the phase bias. With just a 

few minutes of averaging a 1-sec pseudo-range noise of 1m can be reduced to 10 ~ 

20cm. (In general the noise reduction will not go as the square-root of the number of 

samples because of the low-frequency multipath error in the pseudo-range data.) The 

averaged phase-pseudo-range bias can then be added back to any phase point (or all 
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of them) to produce absolute pseudo-range measurements more precise than the 

original data. 

 

For real time applications this smoothing can be carried out recursively to maintain a 

running current estimate of precise pseudo-range, an estimate that will improve with 

time as more points are averaged. If we let nP denote the pseudo-range measurement 

acquired at time n and nd the delta-range measurement between times n-1 and n 

obtained from continuous carrier-phase, then the smoothed pseudo-range 1+nP at time 

n+1 is given by: 

 111 1
1)(

1 +++ +
++

+
= nnnn P

n
dP

n
nP       (5.27) 

Intuitively we see that this simply averages the current pseudo-range value 1+nP in 

with the previously averaged value nP that has been propagated forward with the 

current delta-range measurement 1+nd So long as phase is continuously tracked; there 

is no error growth from continuously propagating the current averaged pseudorange 

forward with delta range. This smoothing can therefore be carried out indefinitely 

while continuous phase lock is maintained. (If phase continuity is broken, the 

smoothing process may have to be restarted.) Note that since SA dither is identical 

on the carrier and pseudo-range, this technique does not smooth SA dither error, only 

measurement error. But since SA dither does not therefore interfere, this is the most 

effective way of smoothing and compressing pseudo-range over long periods and is 

used extensively in many GPS applications. The noise of the smoothed pseudo-range 

is decreased: 

 )(1)( 22 P
n

P δδ =        (5.28) 

 

5.3.2 Sliding-window Phase Smoothing 

 

There are several ways to employ this kind of smoothing in real time operations. For 

the slow update process described here we can simply replace all 1 or 10 seconds 

pseudo-ranges acquired over the update interval (say, 300 measurements over 5 

minutes) with the single smoothed pseudo-range produced at the end of the interval, 

and then restart the smoothing operation for the next interval (in order to maintain 
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independence of successive smoothed points). This greatly reduces the data rate (and 

the required processing time in direct proportion), frequency content in the long-term 

corrections) and leads to no loss of precision (since all acquired pseudo-range 

measurements go into the smoothed result). Where precise high rate data are 

required, such as for the fast corrections, one can simply carry out Equation (5.25) 

continuously and use the resulting smoothed pseudo-ranges at each 1-second time 

step. This will result in highly correlated absolute errors between successive 

smoothed points, while the relative point-to-point precision will approach that of 

pure carrier-phase. For our onboard short-arc method we used the first approach, 

which generates the smoothed pseudo-range data every 1 ~ 5 minutes. 

 

For the slow updates the nominal update interval will be 5 minutes, but could be set 

to any value. This smoothing filter is a recursive estimator which processed the 

measurements sequentially, as they come in, and each full 5 minute measurement 

update requires just a small amount of additional computation.  

 

5.4 Close-form Single Point Position Algorithm 
 

5.4.1 Introduction 

 

Traditionally because the observation equation related to a standard GPS point 

positioning is non-linear, a recursive least squares method is required to solve for the 

user position and receiver clock bias. An initial position estimate is always needed 

for this recursive method. Basically an estimate within 300km of the correct value is 

enough for a convergent solution. But for a high-speed space application, sometimes 

it is hard to obtain such a good initial coordinate value. Furthermore the short-arc 

processing also requires frequent re-initialization if the data is not available for a 

long arc. To solve this initialization problem a closed-form non-recursive single 

point position algorithm was proposed. 

 

The quest for an analytical and non-iterative solution to the GPS absolute positioning 

problem has received much attention [Abel & Chaffe, 1991; Bancroft, 1985; Chaffe 

& Abel, 1994; Grafarend & Shan, 1997a, 1997b]. Many close-form formulas have 
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been proposed for a direct solution based on four GPS pseudo-range observations. 

The solution is exact as it uses only four measurements to solve for the four 

unknowns – the receiver’s 3D position components and the clock bias of the GPS 

receiver.  

 

5.4.2 Methodology 

 

The observation equation for the pseudo-range measured between the receiver with 

unknown position ),,( zyx=r , and the satellite i with known position 

),,( iiii zyx=r , is given by [Yang, 1995; Goad & Tang, 1997]: 

 ( ) ( ) ( ) iiiiii eTcTczzyyxxP +−⋅+−+−+−= δδ
222   (5.29) 

Equation (5.27) is a non-linear equation with multiple unknowns. The first term on 

the right-hand side is the geometric distance between the receiver and the satellite. 

The receiver clock error expressed in units of length is denoted as tc δ⋅ , with c the 

speed of light in a vacuum. The satellite clock error is itcδ which, together with the 

satellite’s position ( )iii zyx ,, , is available from the broadcast navigation message. 

The measurement noise is characterized by the error term iε . 

 

In order to solve for the receiver’s position ),,( zyx and clock error tc δ⋅ , Equation 

(5.29) must undergo simplification. Since the satellite’s clock error is known from 

the navigation message, it can be removed from the observation equation. It is also 

common practice to discard the ionospheric and tropospheric effects and the 

measurement noise. Thus, we obtain 

 ( ) ( ) ( ) tczzyyxxP iiii δ⋅+−+−+−=
222     (5.30) 

There are four unknowns in Equation (5.29), so four pseudo-range measurements are 

needed to obtain a unique answer. Substituting b for Tc δ⋅ and rewriting Equation 

(5.29) as: 

 ( ) ( ) ( )222 zzyyxxbP iiii −+−+−=−     (5.31) 

leads to 
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or alternatively, 

 ( ) ( )
( )2222

2222 2
bzyx

bPzzyyxxPzyx iiiiiiii

−++−=

−++−−++    (5.33) 

Define the Lorentz inner product for 4-space as [Bancroft, 1985]: 

 Mhghg T≡,        (5.34) 

with 4, R∈hg and a 44×  matrix 
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It can be observed that 

 hgMhMg ,, ≡        (5.36) 

Substituting Equation (5.34) into Equation (5.33), we obtain the following 

relationship: 

 0,
2
1,,

2
1

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
bbbPPP i

i

i

i

i

i rrrrrr
   (5.37) 

for each pseudorange measured to satellite i. Since four pseudo-range observations 

are required to solve for four unknowns, we can define the matrix B as: 
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=B       (5.38) 

Where ),,( iii zyx are the coordinates of the i-th satellite and iP  is the measured 

pseudo-range to satellite i (i = 1, 2, 3, 4). Then the four pseudo-range equations can 

be expressed as: 
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And α  is a 14×  vector with 
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Solving Equation (5.39) results in: 

 ( )ατMB
r

+Λ=⎥
⎦

⎤
⎢
⎣

⎡ −1

b
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Substituting Equations (5.36), (5.40) and (5.41) into (5.39) finally gives the 

following quadratic equation [Bancroft, 1985]: 

 [ ] 0,1,2, 1111211 =+Λ−+Λ −−−−−− αBαBαBτBτBτB   (5.43) 

 

Equation (5.41) is a quadratic system, so its solution produces two roots that 

correspond to two potential locations in space, only one of which is correct. 

Determining which location is the correct answer, however, requires additional 

information from other sources; for instance from the approximate position of the 

receiver, or preferably, from extra GPS satellites. The latter method will be discussed 

in the next section. We present here a simple method to check the valid solution. 

 

5.4.3 Method using All Visible GPS Satellites 

 

The quadratic system in Equation (5.41) yields two potential locations in space when 

only four pseudo-range measurements are used. If five or more satellites are 

available, then the resulting redundancy can be exploited to identify the correct 

location. With extra satellites, several sets of four measurements can be formed. 

Since each set will include the correct location in one of its two roots, we are able to 

single out the correct location in each four-measurement set by comparing the 

different location pairs. The final result is then obtained by averaging all suitable 

positions. 

 

Unfortunately, the above procedure is somewhat clumsy and inconvenient. To 

expand Equation (5.39) so as to directly include more than four pseudo-range 

measurements we need to increase the dimension of the matrix B and the vectors α  

and τ , with additional rows associated with the extra satellites. For the analytical 

solution to work, however, the dimension of the system must be reduced to four, and 

this can be achieved by multiplying the system by the matrix B as follows: 
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After similar derivation steps, the solution to Equation (5.44) takes the following 

form [Goad, et al., 1996]: 
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          (5.45) 

It is noticed that the solution to Equation (5.43) incorporates all available 

pseudorange measurements in a least squares sense, as the coefficients of the 

quadratic equation are now minimum two-norm values, i.e., the sum of squares of 

the coefficients is minimum. However, the solution is different from the usual least 

squares solution given by the traditional iterative procedure which on the other hand, 

generates minimum two-norm pseudo-range residuals. 

 

5.5 Experiment Studies 
 

5.5.1 Experiment Description 

 

The purposes of the experimental study are threefold: 

• to explore the spaceborne GPS measurement quality and test the outlier 

detection algorithm;  

• to validate the proposed closed-form SPP algorithm;  

• to assess the accuracy of phase smoothing and validate the sliding-window 

method.  

 

In all the following experiments, three day GPS data from SAC-C (14 to16 February, 

2002) was used. All the data are SA-free dual-frequency measurements. Table 5.5 

gives the GPS data overview. All the results are compared to the JPL ephemrides, 

which has centimetre level accuray. 
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Table 5.5 SAC-C GPS data overview of day 045, 046 and 047 of 2002. 

 Sample 
rate (s) 

Measurement 
type Epochs Observations SVs < 4 Average 

SVs 
SACC 

(04502~04702) 10 1P / 2P / 1L / 2L  25,860 200,138 45 (131) 
= 0.1% 7.7 

 

5.5.2 Observation Linear Combination and Outlier Detection 

 

Several important linear combinations describe in Section 5.2.1 were studied to 

detect outliers and cycle slips. 

 

5.5.2.1 P-code Geometry Combination for Ionospheric Delay 

 

Theoretically, the ionospheric delay can be expressed by 12 PPion −=∆ρ . If the 

ionospheric delay derived from this expression is very large, it suggests the presence 

of an outlier. Table 5.6 lists the ionospheric delay for all satellites in view. We found 

most delays (98.4%) are below 5 metres, which is quite reasonable. We also find that 

0.8% data has a RMS of 209840m. Without deleting these large outliers, the overall 

RMS is 25057m. After deleting these 6644 measurements, we obtained an overall 

RMS of 2.73m. The result suggests we should delete any measurements with larger 

than 15m ionospheric delay. 

 

Table 5.6 Statistics of ionospheric delay for all the satellites. 
 Percentage (number) RMS (m) 

≤  2 m 9.6% (79,335) 1.37 
≤  5 m 98.4% (813,879) 2.48 
≤  15 m 99.2% (820,876) 2.73 
> 15m 0.8% (6,644) 209840 

All 827,520 25057 
 

Figure 5.3 shows the ionospheric delay for SV5 and SV28. Big outliers were seen 

for both satellites. These unreasonable measurements should be deleted. 
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Figure 5.3 Ionospheric delay for SV5 and SV28. 

 

5.5.2.2 Melbourne-Wübbena Combination 

 

As discussed in Section 5.2.3, this combination eliminates the effects of the 

ionosphere, geometry, clocks and the troposphere. It comes from the wide-lane 

combination of both the code and phase measurements. If a discrepancy was found 

during the recursive checking described in Equation (5.23) it was labelled either an 

outlier or cycle slip. Figure 5.4 shows the Melbourne-Wübbena combination for SV5. 

Among all of these points with larger error we can see that there are some scattered 

points which indicate outliers, while the continuous outliers indicate a cycle slip. 

This is a quite straightforward detection method that is good for onboard processing. 

In Figure 5.4 we labelled three cycle slips and label all the other points beyond iσ4  

values as outliers. Then the outliers were removed from the raw measurements. The 

cycle slips can simply be fixed by the RMS difference and a low weight will be 

attached to these fixed measurements in the following processing. If the most stable 

situation is required just remove the cycle slip affected data as well.  
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Figure 5.4 Melbourne-Wübbena combination residual of SV5. 

 

5.5.2.3 Ionosphere-Free Linear Combination 

 

This linear combination should consist of noise only. Though the noise is about four 

times larger than that of the Melbourne-Wübbena combination, it is useful to detect 

some system error neglected by other detection steps. Figure 5.5 shows the result 

from SV5, we only found one outlier in segment IV, where the far right point has a 

value that exceeds 3.54 =iσ m. 

 

5.5.2.4 Summary 

 

During this experiment, several outlier detection methods were tested; Table 5.7 

gives the detected outlier statistics from different methods. We found 11% 

measurements have been removed, which is a high percentage for some. But we can 

adjust three detection-control values: phase-link arc length, ionospheric delay 

threshold, and P-code noise, to allow more measurement, to pass the detection 

process. 
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Figure 5.5 Ionosphere-free linear combination for SV5. 

 

Table 5.7 Outlier detection summary. 
 Number of outliers Percentage 

Errors 2 0.0% 
Short phase-link arc 2458 1.2% 

Ionosphere delay 13648 6.8% 
Melbourne-Wübbena Combination 1565 0.8% 

Ionosphere-free combination 57 0.0% 
P-code noise check 4473 2.2% 

Overall 22203 (200140) 11.1% 
 

5.5.3 Code Measurement Quality and Residual Analysis 

 

After the outlier detection process in previous experiments, a “clean” GPS data set 

was obtained. In this section the quality of the code measurement was inspected by 

means of the single point positioning results and the residuals. 

 

5.5.3.1. Single Point Positioning Result 

 

Both the broadcast ephemerides and IGS ephemerides were used to produce SPP 

solutions using SACC flight data. Figure 5.6 illustrates the 3D position RMS error of 

6.8m and 4.9m for the broadcast ephemerides and IGS solutions, respectively. These 
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results are reasonable. Figure 5.7 gives the GDOP and satellite visibility. Figure 5.8 

shows the receiver GPS clock bias derived from the SPP solution.  

 

5.5.3.2 P-code Noise 

 

After the system errors have been removed from the GPS measurements, the 

positional accuracy is determined by the measurement noise and geometry only. The 

measurement noise includes the signal noise, hardware noise and multipath effect. In 

this chapter, the noise of both 1P  and 2P  were inspected using the following 

expression [Zhou, et al., 2003]: 

 ( ) ( )ttttt LLPPPM 11111111 −−−= ++ λ ,  

( ) ( )ttttt LLPPPM 21222122 −−−= ++ λ   t = 0, 1, 2…  (5.46) 

Here 1λ = 0.1903 metres for the frequency of 1f  (1575.42 MHz), and 2λ  = 0.2442 

metres for the frequency of 1f  (1227.60 MHz). tPM1  and tPM 2 mainly contain 

receiver noise and multipath errors. The standard deviations of the observations 1P  

and 2P  are given as: 

2

2

2,
2

2

1
21 PM

P
PM

P

σ
σ

σ
σ ==      (5.47) 

 

There are 28 satellites in view over these three days. Table 5.8 gives the statistics of 

1PM and 2PM from a set of 24h SAC-C data on day 045~047, 2002. Figure 5.9 

shows that the RMS is 39.5cm and 32.8cm for 1P  and 2P , respectively. Figure 5.10 

illustrates the relationship between measurement noise and elevation angle. We 

found larger noise when the elevation angle was lower than 25 degree. The overall 

RMS value is 23.5cm when measurements were only collected from elevations 

higher than 25 degree, which is 16cm less than that of all data considered. 

 

Table 5.8 Overall P-code noise statistics for all satellites. 
 <=0.2m <=0.5m <=1.0m <=2.0m <=5.0m >5.0m 

1PM  64.1% 
9.7cm 

86.9% 
18.7cm 

96.3% 
28.2cm 

99.7% 
37.1cm 

100% 
39.5cm 0 

2PM  64.9% 
9.9cm 

90.1% 
19.1cm 

98.2% 
26.9cm 

99.9% 
31.4cm 

100% 
32.8cm 0 
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Figure 5.6 Single Point Positioning (SPP) results from SAC-C data of three days 

(04502 ~ 04702). 

 
Figure 5.7 GDOP (with a cut-off value of 12) and GPS satellite visibility. 
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Figure 5.8 SACC-C GPS clock drift over three days (04502 ~04702). 

 
Figure 5.9 Overall P-code noise for three days (04502 ~04702). 
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Figure 5.10 Overall 1P  noise with respect to the elevation angle. 

 

5.5.3.3 Residuals 

 

The measurement residuals were calculated using the precise SACC orbits, which 

has centimetre level accuracy. If the GPS ephemerides are known at the centimetre 

level as well the residuals should represent the GPS measurement residual and some 

small system errors (coordinate transformation, relativistic effects, etc). Figure 5.11 

shows the measurement residuals using the broadcast ephemerides and IGS 

ephemerides, respectively. We found the RMS using IGS result to be 2.67m, and for 

broadcast ephemerides solution it is 3.66m. Even with the IGS solution the value of 

2.67m is still high considering that the RMS of P-code noise is around 30cm 

(derived in the previous section). After we account for the ionosphere-free 

differential noise and some un-modelled system errors, around a 1 ~ 1.5 metre 

discrepancy can be attributed to the GPS clock bias. Although the IGS final solution 

has < 0.1 ns [IGS, 2004] clock accuracy, the 5 minute interval can still introduce an 

interpolation error. For the broadcast ephemerides the standard deviation currently is 

2m for GPS orbits and 7 ns for GPS clock [IGS, 2004]. So a 3.66m RMS error seems 

reasonable. Furthermore, the relativistic effect and antenna offset in GPS 

measurements have been inspected. Figure 5.12 and Figure 5.13 give the results. 
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Figure 5.11 Code (ionosphere-free combination) residual using precise SACC 

ephemerides. 

 
Figure 5.12 Relativistic effect for the 1P / 2P  ionosphere combination. 
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Figure 5.13 Antenna phase centre offset for both GPS satellite and spacecraft. 

 

5.5.4 SPP Result Using Closed-form Formulation 

 

The closed-form single point positioning algorithm was also tested. The 

measurements were treated in the normal manner. Figure 5.14 shows the detailed 

results. It is found that a 3D positional error of better than 100 m can be achieved 

over 83.1 % of the measurement epochs. The RMS value is around 37m, which is 

quite reasonable. In only 0.7 % of the cases did the 3D positional error exceed 10 

kilometres error. Of course another condition of this method is there must be at least 

four satellites visible. The results suggest that the closed-form algorithm is a fast and 

reliable one for initialization purposes. 
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Figure 5.14 Closed-form SPP result for three days (04502 ~ 04702). 

 

5.5.5 Sliding-window Phase Smoothing 

 

5.5.5.1 Phase Connection Arc Length 

 

As described in Section 5.3 carrier-phase smoothing requires continuous code and 

phase measurements. The smoothing quality depends on the phase-connected arc 

length; a better result can be obtained with a longer phase connection arc. As an 

outlier detection step, we normally delete the whole arc data where the arc length is 

less than 2 minutes and the number of data points is less than 10. After this outlier 

deletion process, the phase-connected arc length was calculated for all satellites in 

view. The result is presented in Figure 5.15. It is observed that 85 % of arcs are 

longer than 20 minutes; and some 8% are shorter than 5 minutes.  
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Figure 5.15 Phase connection arc length for all satellites in view. 

 

5.5.5.2 Phase-smoothing with Different Arc Lengths 

 

Carrier-phase smoothing results using different arc lengths are presented here. The 

arcs are: 5 minutes, 10 minutes, 15 minutes and 20 minutes, respectively. We only 

used the broadcast ephemerides and the results were compared with the non-

smoothed SPP solution. Figure 15.16 gives the 3D SPP positioning error with a RMS 

value. Table 5.9 gives the P-code noise comparison between the smoothing value 

and raw value. 
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Figure 5.16 SPP results with phase smoothing (5 minutes, 10 minutes, 15 minutes, 

20 minutes) compared with non-smoothing. 
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Table 5.9 Overall 1P / 2P noise statistics after phase smoothing. 
Scheme <=0.2m <=0.5m <=1.0m <=2.0m <=5.0m >5.0m 

1P  64.1% 
9.7cm 

86.9% 
18.7cm 

96.3% 
28.2cm 

99.7% 
37.1cm 

100% 
39.5cm 0 

Raw 
2P  64.9% 

9.9cm 
90.1% 
19.1cm 

98.2% 
26.9cm 

99.9% 
31.4cm 

100% 
32.8cm 0 

1P  97.7% 
0.7cm 

98.2% 
2.7cm 

98.9% 
6.5cm 

99.6% 
14.3cm 

100% 
21.3cm 0 

5min 
2P  95.8% 

1.1cm 
97.0% 
4.1cm 

98.1% 
8.9cm 

99.1% 
16.9cm 

100% 
35.3cm 0 

1P  99.0% 
0.4cm 

99.2% 
1.4cm 

99.4% 
3.8cm 

99.7% 
9.9cm 

100% 
16.5cm 0 

10min 
P2 97.6% 

0.9cm 
98.4% 
3.2cm 

99.0% 
6.7cm 

99.4% 
11.4cm 

100% 
28.1cm 0 

1P  99.4% 
0.2cm 

99.5% 
1.0cm 

99.6% 
2.6cm 

99.8% 
7.4cm 

100% 
12.8cm 0 

15min 
P2 98.29% 

0.8cm 
98.8% 
2.9cm 

99.3% 
6.0cm 

99.7% 
10.0cm 

100% 
22.1cm 0 

1P  99.6% 
0.2cm 

99.7% 
0.8cm 

99.7% 
2.3cm 

99.9% 
6.1cm 

100% 
10.6cm 0 

20min 
P2 99.6% 

0.1cm 
99.6% 
0.6cm 

99.7% 
1.8cm 

99.8% 
5.1cm 

100% 
17.1cm 0 

 

We found the 20 minutes smoothing only improved the SPP accuracy about 60 

centimetres, which is quite small compared to the improvement in the measurement 

noise level. There are two possible reasons for this. First, the least squares process 

with an average of 7 visible GPS satellites absorbs much of the measurement noise. 

Second, the ionosphere-free combination and the between satellites difference 

introduce additional process noise which reduces the advantage of smoothing. We 

plot the 1P / 2P code noise with respect to elevation angle in Figure 5.17 dramatic 

improvement can be seen after the 20 minutes smoothing. 

 



 140 

 
Figure 5.17 1P / 2P code noise with respect to elevation angle after 20 minutes phase 

smoothing for SV5. 

 

5.5.5.3 Sliding-window Smoothing 

 

Sliding-window smoothing sequentially processes 10 to 15 minutes data, and 

generates a smoothed measurement every 5 minutes. From previous experiment 

results we found that the best smoothing arc length is 10 to 20 minutes. Table 5.10 

gives the different window sizes and the storage requirement. For example, if the 

short-arc is 2 hours, and we choose a window size of 5 minutes, we can get 24 epoch 

measurements, and the measurement storage is around 192 bytes. The sliding-

window method can reduce the computing time and storage requirement while 

retaining measurement accuracy. 

 

The following test evaluated the sliding-window smoothing performance by 

comparing the SPP solution accuracy. Figure 5.18 illustrates the SPP 3D RMS error 

and computing time. Nine configurations were used; the nm×  means the smoothing 

arc  
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is m minutes and window size is n minutes. It was observed that the computing time 

was reduced a little bit compared to processing all the available data and the quality 

of the measurements remained at the same level. 

 

Table 5.10 Measurements and storage requirements for short-arc orbit determination 

using sliding-window phase smoothing. 
Measurement number and 

Storage (bytes) 30 minutes 1 hour 2 hours 

Every 1 minute 30 / 240 60 / 480 120 / 960 
Every 2 minutes 15 / 120 30 / 240 60 / 480 
Every 5 minutes 6 / 48 12 / 96 24 / 192 

 

 
Figure 5.18 Comparison of SPP results and computational burden with different 

sliding-window smoothing strategies. 

 

5.6 Summary 
 

In this chapter, GPS code measurements and their error source have been described, 

and different outlier detection methods have been discussed. A sliding-window 

carrier phase smoothing algorithm has been validated through extensive experiments. 

This method can reduce the measurement storage and retain the carrier-phase 

smoothing precision. Furthermore, a closed-form single point position algorithm was 

also validated. It can be used to provide initial position with tens of metres accuracy 
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without any a priori information. Together, these techniques facilitate high accuracy 

onboard GPS processing. In summary, we have reached the following conclusions: 

• An outlier detection scheme was developed, consisting of separate modules, 

each requireing little computing resource. It can also detect cycle slip and fix 

them using a simple method and lower weight is given to these required 

measurements to prevent performance degrading. 

• The closed-form SPP algorithm generates positioning solution with tens of 

metres error. This accuracy can be achieved for 83% of measurements. 

Furthermore, the error is smaller than 10km for 99% of measurements, which 

is still a good initial estimate for the subsequent orbit filtering process. 

• The carrier-phase smoothing reduces the code noise from 39.5cm and 32.8cm 

down to 17.1cm and 10.6cm, for 1P  and 2P respectively. 

• We found that best SPP result was achieved with 10 ~ 20 minutes smoothing. 

For the sliding-window smoothing the results are basically the same with 

different window sizes. The 5 minute window size with 10 ~ 20 minutes 

smoothing is a good choice for onboard processing. 
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Chapter 6 

Short-arc Orbit Determination 
 
 
 
This chapter deals with orbit estimation from the measurements. For stability and 

accuracy consideration, and based on previous efforts toward the simplified orbital 

model and GPS measurement model, a short-arc filter is proposed in this chapter. To 

address both the accuracy and computational burden challenge, the filter has the 

following characteristics: 

• It is a weighted least squares batch filter. A parametre regularization 

technique is also used to minimize the singularity effect arising from poor 

satellite geometry and measurement distribution.  

• Using the orbit model simplification strategy proposed in Chapter 3, but with 

the gravity approximation method proposed in Chapter 4 instead. These 

simplifications are especially suitable for onboard data processing or real 

time orbit computation. 

• Using the sliding-window carrier-phase smoothing filter to refine GPS code 

measurements, and reduce the number of data points. 

• Achieving improved orbit solutions when the uncertainty of GPS 

observations is higher than the modelling errors, and correction for dynamic 

model biases when the GPS observations are more accurate. 

 

6.1 Weighted Least Squares Filter 
 

6.1.1 Least Squares Problem 

 

The basic idea of least squares estimation as applied to orbit determination is to find 

the trajectory and the model parametres for which the square of the difference 

between the modelled observations and the actual measurements becomes as small 

as possible or, in other words, a trajectory which best fits the observations in a least 

squares of the residuals sense (Figure 6.1). In reality, since different measurements 
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have different units and reliability, a weighting factor is applied to each residual and 

it is the square of the weighted residuals that is minimized. In order to arrive at a 

mathematical formulation of this principle let: 

( )Tttt qpvrx ,,,=        (6.1) 

denote a time-dependent, m-dimensional vector comprising the satellite’s position  

tr and velocity tv as well as the free parametres p and q that affect the force and 

measurement model. The time evolution of tx may be described by an ordinary 

differential equation of the form 

( )xx ,tf=&  with an initial value at epoch 0t : 
00 tx xrr

=   (6.2) 

Furthermore, let: 

),,( 1 nZ zz L=        (6.3) 

denote an n-dimensional vector of measurements taken at times ntt ,...,1 . The 

observations are described by: 

( ) ( ) iiiitiiti tt
ii

εxhεxgz +=+= 0, ,,      (6.4) 

or: 

( ) iεxhz += 0         (6.5) 

Here ig denotes the model value of the i th observation as a function of time it and 

the instantaneous state 
it

x whereas ih denotes the same value as a function of the 

state 0x at the reference epoch 0t . The quantities iε account for the differences 

between actual and model observations due to measurement errors, which are 

usually assumed to be randomly distributed with zero mean value. 

 

The least squares orbit determination problem may now be defined as finding the 

state 0x)  which minimize the loss function: 

( ) ( )( ) ( )( )000 xhzxhzρρx −−== TTJ      (6.6) 

 

(i.e. the squared sum of the residuals iρ ) for a given set of measurements z . It is 

noted that the given formulation of the loss function requires all measurements to be 

of equal type and quality. This assumption simplifies the subsequent presentation but 

will later be dropped to arrive at a completely general formulation. In order to avoid 
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a non-unique determination of 0x , it is further assumed that the number of 

observations n is at least equal to the number of unknown m. 

t0 t1

Observed orbitEstimated orbit 

Nominal orbit

Initial state bias

GPS sample point State update time epoch 

t2 ··· ···

 
Figure 6.1 Concept of least squares orbit estimation. 

 

6.1.2 Linearization and Normal Equation 

 

The practical solution of the least squares orbit determination problem is 

complicated due to the fact that ( )0xh  is a highly non-linear function of the unknown 

vector 0x , which makes it difficult or impossible to locate the minimum of the loss 

function without additional information. As mentioned above, an approximate value 

0
~x of the actual epoch state is, however, often known, which may be used to simplify 

the least squares problem considerably. 

 

Linearizing all quantities around a reference state 0
~x , which is initially given by 0

~x , 

the residual vector is approximately given by: 

( ) ( ) ( ) 000
0

00
~~ xHzxx

x
hxhzxhzρ ∆−∆=−

∂
∂

−−≈−=   (6.7) 

Here 000
~xxx −=∆ and ( )0

~xhz −=∆ z  denote the difference between the actual 

observations and the observations predicted from the reference trajectory. 

Furthermore, the partial derivatives: 

( )
00

~0

0

xx
x
xhH

=
∂

∂
=        (6.8) 
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gives the relationship of the modelled observations with respect to the state vector at 

the reference epoch 0t . Equation (6.7) provides a prediction of the measurement 

residual after applying a correction 0x∆ to the reference state and re-computing the 

models observation h . 

 

The orbit determination problem is now reduced to the linear least squares problem 

of finding 0x∆ such that: 

( ) ( ) ( )000 xHzxHzx ∆−∆∆−∆=∆ TJ      (6.9) 

i.e., the predicted loss function after applying a correction 0x∆ becomes a minimum. 

If the Jacobian has full rank m, i.e., if the columns of H are linearly independent, this 

minimum is uniquely determined by the condition that the partial derivatives of J 

with respect to 0x∆ vanish: 

( ) ( ) 0
00

0

00 =
∆∂

∆−∆∆−∆∂

∆=∆ xx
x

xHzxHz
)

T

    (6.10) 

Using the relation 

c
ab

c
ba

c
ba

∂
∂

+
∂
∂

=
∂

∂ TT
T

      (6.11) 

to compute the derivatives of ρρT , the general solution of the linear least squares 

problem may be written as  

( ) ( )zHHHx ∆=∆
− TT 1

0
)       (6.12) 

after a proper rearrangement. The matrix HHT is an m-dimensional symmetric 

square matrix, which is also known as the normal equations matrix. Since H was 

assumed to have full rank, the inverse of HHT exists, even though it need not 

actually be computed. Instead 0x)∆ may be obtained by solving the m-dimensional 

normal equations: 

( ) ( )zHxHH ∆=∆ TT
0
)        (6.13) 

using standard techniques for positive definite linear systems of equations (e.g. 

Cholesky’s algorithm). 

 

Due to the non-linearity of H the simplified loss function differs slightly from the 

rigorous one and the value of 000
~ xxx )∆+=  determined so far is not yet the exact 
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solution of the orbit determination problem. It may, however, be further improved by 

substituting it for the reference value 0
~x and repeating the same procedure. Based on 

this idea the non-linear problem can be solved by iteration: 

( ) ( )( )jjTjjTjj
0

1
0

1
0 xhzHHHxx −+=

−+      (6.14) 

which is started from 0
0
0

~xx = and continued until the relative change of the loss 

function is smaller than a prescribed tolerance for successive approximations. The 

Jacobian: 

( )
j

j

00
0

0

xx
x
xhH

=
∂

∂
=        (6.15) 

should be updated in each iteration to ensure an optimum convergence, but may also 

be replaced by the constant value 0H . Even though the number of iterations 

increases in this case, the total computational effort can often be reduced, due to the 

large amount of work that is otherwise required for the integration of the state 

transition matrix. 

 

6.1.3 Observation Weight 

 

The algorithm implies that that all observations are treated equally, even though the 

observation vector z is generally composed of different measurement types. The 

accuracy of each measurement type may, however, easily be accounted for by 

weighting all observations with the inverse of the mean measurement error iσ , i.e. by 

replacing the residuals iρ  with the normalized residuals: 

( )( )0
11 xhzρρ ii

i
i

i
i σσ

−==)       (6.16) 

Here iσ should consider the total expected error in the measurement due to both 

random noise and systematic errors (e.g. refraction). As a result the basic least-

squares Equation (6.12) remains essentially unchanged except that H and z∆ are 

replaced by the modified values: 

SHH =
)

 and zSz ∆=∆)       (6.17) 

Here S is a square diagonal matrix: 
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( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

==
−

−

−−

1

1
1

11
1

0

0
,...,

n

ndiag
σ

σ
σσ OS     (6.18) 

which divides the i th row of a matrix or vector by iσ upon multiplication from the 

left. Alternatively the solution of the weighted least squares problem may be written 

as 

( ) ( )zWHWHHx ∆=∆
− TT 1

0
)       (6.19) 

using the weight matrix: 

( )22
1

2 ,..., −−== ndiag σσSW       (6.20) 

Both representations are equally well suited to handling uncorrelated measurement 

errors, which are fully described by the corresponding values iσ . The weight matrix 

may, however, also be used for correlated measurement errors, in which case W 

becomes a non-diagonal matrix. 

 

As alternatives to constant weighting normally used in GPS analysis, there are some 

other possible methods that may be used [Vermeer, 1997; Teunissen, et al., 1999; 

Collins & Langley, 1999; Hartinger & Brunner, 1999]: 

• Weighting as a cosecant function of the satellite elevation angle [Vermeer, 

1997; Collins & Langly, 1999]. This is because the amount of signal noise 

increases towards the horizon, similar to the tropospheric error, which has a 

cosecant shape, according to various models of the tropospheric mapping 

function, such as Marini, Chao, Davis and Herring mapping functions. 

• Weighting as square of a cosecant function of the satellite elevation angle 

[Vermeer, 1997; Hartinger & Brunner, 1999]. This is from the fact that GPS 

residuals reveal a more swiftly increasing noise level for low elevation angles. 

• Exponential weighting schemes that weight corresponding observations 

observed from near the horizon very much lower [Euler, 1991]. 

• Weighting that reflects receiver generated signal-to-noise ratio (SNR) values 

[Collins & Langley, 1999; Hartinger & Brunner, 1999]. Normally, SNR 

represents the carrier-to-noise-power-density ratio ( 0/ NC ), which varies 

with the elevation of the arriving signal. Langley [1997] derived phase 

variance (m) using 0/ NC  (dB-Hz) values as follows: 
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  0/1.0210)
2

( NCi
L B

i

−=
π
λ

σ , i = 1,2    (6.21) 

where B is the carrier tracking loop bandwidth (Hz). It should be noted that some 

receiver manufacturers do not provide either SNR or 0/ NC . 

  

Hartinger and Brunner [1999] used the SIGMA-ε  model where the phase variances 

are computed using 0/ NC  values and thus observation weight directly echoes signal 

quality. Their experimental results show that baseline RMS of the SIGMA-ε  model 

is much less than that in the case of equal weighting, especially at low elevation 

cutoff angle. 

 

Collins and Langley [1999] reported that, in the presence of multipath, the cosecant 

and SNR weighting schemes yield a significant improvement over the equal-

weighting scheme. Moreover, according to the scaling effect of the a posteriori 

variance factor, the cosecant and SNR schemes are almost numerically equivalent. 

 

The amount of observation noise increases and can indicate the presence of 

multipath, which mostly occurs in signals from low satellite elevation angles. It 

should be more appropriate to apply a step function using a combination of uniform 

weight for high elevation angle observation and lower weight at low elevation angle. 

Deweighting observations at high elevation angles will lose valuable information. 

The step function variance may be given as: 

 
α
α

σ
σ

σ
<
>

⎩
⎨
⎧

=
ele
ele

ele
ele

)(cos
)( 22

2
2      (6.22) 

or 

 
α
α

σ
σ

σ
<
>

⎩
⎨
⎧

=
ele
ele

ele
ele

ele
)(cos
)cos(

)( 22

2
2     (6.23) 

where α  is the elevation threshold angle. 

 

6.1.4 Numerical Problems 

 

As is evident from the mathematical formulation of the least squares problem, the 

number of observations must at least be equal to the number of unknowns, but 
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should be considerably larger to reduce the influence of individual measurement 

errors. A large number of observations may still, however, be insufficient if the 

tracking geometry and distribution do not provide enough information on all 

estimation parametres. The direct solution of the normal equations: 

( ) zHxHH TT ∆=∆ 0ˆ       (6.24) 

will then give rise to numerical difficulties, even if the normal equation matrix is not 

exactly singular. 

 

To avoid this stability problem many numerical methods have been formulated, such 

as QR factorization, UDU factorization and singular value decomposition (SVD). 

They are all effective for stabilizing the least square filter, but the computational cost 

to introduce such methods for onboard implementation is also high. 

 

We propose a so-called regularization parametreization method combined with the 

LU decomposition method. To be able to solve the ill-conditioned system, we 

minimize the function: 

 ( ) ( ) ( ) )ˆ()ˆ(ˆˆˆ 00000 xLxLxHzxHzx ∆∆+∆−∆∆−∆=∆ TTJ αα  (6.25) 

over all 0x̂∆ in a compact set satisfying 

 ε<− 0x̂H∆∆z       (6.26) 

Here, the α  is some fixed positive number, the so-called regularization parametre, 

and L is some linear operator (e.g. 00 ˆˆ xxL ∆=∆  or 00 ˆˆ xxL ∆′=∆ ). Under certain mild 

conditions, the problem Equation (6.23) has a unique solution, denoted by 0x̂α∆ . 

Moreover, 0x̂α∆  will converge to the solution of Equation (6.22) as 0→α , 

provided that 02 →ε no less rapidly than α . The linear operator L is often chosen 

in such a way that it will help to suppress wild oscillations in functions 0x∆  which 

satisfy Equation (6.24). However, this effect should not be too strong so that all 

oscillations in 0x∆  are damped out. Using a variational argument, the solution of 

Equation (6.23) can be shown to be the solution of: 

 zHxLLHH ∆′=∆′+′ 0ˆ)( α      (6.27) 
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where H′ and L′ are the operators that are conjugate to H and L respectively. 

Equation (6.27) is a nn× linear system. It can be well solved using a LU 

decomposition method. 

 

6.1.5 Comparison of Least Square Batch Filter and Sequential Filter 

 

As has been pointed out in the introduction, the estimation techniques commonly 

employed for orbit determination purposes are closely related to each other and a 

smooth transition is possible from the batch least squares method to the various 

forms of Kalman filter. Each type of estimator has inherent advantages and 

disadvantages and a trade-off is usually required to select the most suitable 

estimation method for a particular application: 

• Measurement processing and state correction: The classic batch least 

squares method computes the epoch state estimate after processing the full 

set of observations. If improved epoch state estimates are required after each 

measurement, a formulation involving Givens rotations or the recursive least 

squares method may be used. The Kalman filter in contrast processes a single 

scalar or vector measurement at a time and yields sequential state estimates at 

the measurement times. 

• Treatment of non-linearities: Due to the non-linear relation between the 

epoch state vector and the modelled measurements, multiple iterations are 

required in the least squares method to compute a state estimate that actually 

minimizes the loss function. Using the extended Kalman filter these iterations 

may in general be avoided, since the reference solution is changed with each 

observation. Problems may more arise. However, in the case of large 

deviations between the a priori state and the actual state as well as poor 

management of the covariance; 

• Computer implementation: When using a Kalman filter for orbit 

determination there is no need to store measurements from previous time 

steps. Storage requirements are therefore smaller than for the least squares 

method, in which various data have to be stored for subsequent iterations. 

• Numerical stability: Both filters and least squares estimators may be subject 

to numerical problems in the case of bad observability as indicated by an ill-
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conditioned normal equation matrix or covariance matrix. However, 

numerically stable algorithms employing different types of matrix 

factorizations are available; The increase in computing effort and storage 

requirement is generally negligible and the stabilized algorithms can 

therefore be recommended for most applications. 

• Divergence: A divergence of the least squares solution from one iteration to 

the next may occur in rare instances of bad observability, a bad initial state 

estimate or high level of non-linearities. All of these could also cause a 

Kalman filter to diverge. In addition, divergence of the state estimate from 

the true solution is likely to occur in a Kalman filter when the covariance 

becomes small and the filter becomes insensitive to new observations. 

Process noise may be incorporated into the filter to avoid divergence, but 

heuristic assumptions and simulations are often required to determine the 

appropriate noise model for a particular situation, unless a physical 

description of the process noise density matrix is available. 

• Process noise: A unique feature of the Kalman filter as compared to the least 

squares method is the incorporation of process noise into the estimation 

process. Aside from being required to avoid filter divergence problems, it 

may be employed to generate more realistic covariance predictions in the 

presence of unmodelled accelerations. Furthermore, it may be used to reduce 

the influence of past observations on the state estimate as compared to more 

recent observations. 

• Influence of bad data points: The batch estimator and the recursive least 

squares method process all data points using a common reference trajectory. 

This facilitates the handling of bad data points, which may be recognized by 

residuals that are considerably larger than the average value. In general the 

least squares technique is therefore more robust and easier to handle than the 

Kalman filter. The latter requires a careful balance between a priori 

covariance, measurement weighting and process noise to allow a rejection of 

bad data points.  

 

Traditional applications in which Kalman filters are preferred to batch least-squares 

techniques include the onboard navigation of manned or unmanned spacecraft 
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requiring a real time state estimate [Battin & Levine, 1970]. Filtering techniques are, 

furthermore, used in the field of interplanetary orbit determination and navigation. 

By incorporating appropriate process noise, unmodelled statistical accelerations due 

to attitude thruster activities or radiation pressure modelling simplifications may be 

accounted for, which provides more realistic estimates of the injection error near the 

target planet [Campbell, et al., 1983]. The batch least squares method on the other 

hand is commonly employed for off-line orbit determination of Earth-bound 

satellites [Long, et al., 1989; Soop, 1983] and for the estimation of geodetic 

parametres from satellite orbits [McCarthy, et al., 1993]. A comparison indicating a 

good agreement of orbit determination results from precision batch least squares and 

sequential estimation programs (GTDS, RTOD/E) for satellites tracked by the 

Tracking Data and Relay Satellite System (TDRSS) has recently been established by 

a study conducted on behalf of the Goddard Space Flight Centre [Oza, et al., 1992]. 

Similar conclusions have been obtained by Halain et al. (1998) for single and multi-

station tracking of geostationary satellites. 

 

6.2 Covariance Analysis for a Batch Filter 
 

6.2.1 Dynamical Orbit Error for a LEO 

 

The typical accuracy of instantaneous point positioning is 5 ~ 15 metres without the 

SA effect; the major error contributors are GPS orbit and clock error and pseudo-

range measurement noise (including multipath). A typical dynamical filter, such as a 

least squares filter, reduces the position error by smoothing measurement error 

against an orbit model over the fitting arc. Metre-level random errors may readily be 

reduced to decimetres or below. At the same time, key systematic errors such as GPS 

orbits, satellite clocks and multipath may be largely uncorrelated with the low orbiter 

dynamics and, therefore, attenuated in the solution.  

 

But the improvement from the dynamical filtering is reduced when the altitude is 

low, for instance, below 800km. As the filter smooth measurement error, it 

introduces dynamic model error and process error. For a LEO satellite the orbit 

modelling is much more complicated due to the following effects: high order 
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harmonic items of Earth gravity; Earth solid tide; and surface forces from 

atmospheric drag. Model adjustments made during the dynamic filtering process 

may offer only partial improvement. Any remaining model errors will appear 

directly in the orbit solution. Gravity and drag model errors are often dominant, and 

both increase rapidly as the satellite altitude decreased. Thus, accurate dynamic orbit 

estimation becomes problematical at low altitudes. For example, the motion of 

Lageos, a dense inert sphere at about 6000km altitude, can be modelled to within a 

few centimetrees over periods of weeks; the motion of T/P, a larger vehicle at 

1336km attitude, to about 10cm over 10 days; the motion of SAC-C, at 800km 

attitude, to one or two metres over one day; and the motion of the CHAMP, at 

300~400km, to roughly 10m over an orbit revolution. Under such circumstances, 

kinematic information is important to correct the orbital model error. Table 6.1 

compares the orbit integration error for different arcs for different missions: T/P, 

SAC-C and CHAMP. The models used are the same for these missions except 

different drag parametres.  

 

Table 6.1 Un-modelled dynamical error for different arc against different missions. 
 15 minutes 1 hour 2 hours 6 hours 12 hours 1 day 

T/P 3cm 19cm 63cm 1m 2m 13m 
SAC-C 13cm 74cm 8m 59m 248m 946m 

CHAMP 30cm 12m 46m 517m 2067m 8102m 
 

Dynamic model errors often reveal themselves in the post-fit residuals. That is, they 

create systematic discrepancies between the actual measurements and theoretical 

measurements derived from the modelled trajectory. Imagine a case in which a force 

varies randomly from one time step to the next and is, therefore, unpredictable, but 

can be observed in the post-fit residuals. A number of forces (drag, gravity 

anomalies) can appear to behave in this way.  

 

In a typical Kalman filter, to observe un-modelled motion, the filter models the time-

varying satellite force as the sum of a deterministic component (the standard 

dynamic model) and a stochastic component, which is the process noise model. This 

is a way of telling the filter that the state transition information in Φ  is incomplete—

that there is another component that the filter cannot predict, but that it can try to 

observe in the data and estimate at each time step. This means that at each time step, 
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in addition to applying the standard dynamic updates, the filter will examine the 

discrepancy between the dynamic state estimate and the apparent state as indicated 

geometrically by the measurements. From that discrepancy it will estimate a local 

correction to the dynamical model, valid only over the current update. When added 

to the dynamic model, that correction will reduce the disagreement between the 

observations and the solution trajectory at this epoch. As it proceeds through the data 

the filter will generate a sequence of local force model corrections, one at each 

update time, bringing the solution trajectory into better agreement with observations. 

But that may be undesirable when bad measurements are present, after only one bad 

measurement is enough with conventional (sparse) tracking data, as the data acquired 

at any one time are often weak and insufficient by themselves to determine position. 

A relaxed constraint on process noise estimate may result in a large and erroneous 

adjustment to the state, or may cause the solution to fail. This is one reason why a 

Kalman filter is not as stable as a least-squares filter.  

 

Starting from another point of view, the model error problem can be avoided to some 

extent if only short-arc data are processed in a least squares filter, because the model 

error propagation is not very serious within a 1 ~ 2 hour arc.  

 

6.2.2 Covariance Analysis of the Batch Filter Result for LEO 

 

There are two parts to the GPS observation equation: random measurement noise and 

system un-modelled error. Both affect the performance of the batch filter.  

 

Normally the measurement noise vector vr  is assumed to be white noise with zero 

mean value, with the standard normal distribution. Thus the error covariance related 

to the estimation xr  depends on the number of observation number. The more data in 

a batch filter, the better the noise is reduced. Of course, things are not that simple in 

real situations due to data correlation, the data quality distribution and system model 

error, all of which affect the final filtering result. If a carrier-phase smoothing filter is 

carried out for the P-code data, the original P-code noise can change from metres 

level to decimetre level. This will ease the demand for large number of observation. 
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On the other hand, the dynamic model error increases with longer filtering arc. These 

errors come from both the dynamic model error and the integrator truncation 

accumulation error. The behaviour of these system errors cannot be modelled as 

stochastic ones, thus they will not be alleviated using more measurements; they only 

depend on the accuracy of the measurements. One can model the system in a high-

parametreized procedure, as in GPISY, where more than 40 parametres are used in 

the dynamic model. In this manner, a longer arc is preferred because the full strength 

of dynamic filtering can be gained. Obviously, this strategy is not suitable for 

onboard processes. 

 

Another type of system error comes from the GPS measurement modelling. 

Typically, GPS ephemerides and clock error, ionospheric delay and receiver clock 

bias are the dominant error sources. Nowadays, the broadcast ephemerides and clock 

accuracy are much better than before. By comparing the broadcast ephemerides with 

the IGS result we can see that there is normally about a 1~2m discrepancy between 

them. One study [Bertiger & Yunk, 1990] showed that errors in the GPS orbits were 

attenuated by roughly a factor of two in the dynamic solution. That is, 1 ~ 2 metres 

GPS orbit error resulted in errors of 0.5 ~ 1 metre in the solution orbit. For other 

types of error sources, by forming the ionosphere-free combination and single-

difference between different satellites, the residual should be at the decimetre level. 

In all, the measurement modelling error residual typically will be around 1 metre. 

 

6.2.3 Parametreization 

 

Parametreization is an important issue when only small set of measurements is used 

in the filter. In orbit determination, in addition to the six state vector variables, a set 

of orbital or measurement model parametres are estimated during the filtering 

process. However, in comparison with the state vector, the orbital parametre is much 

more sensitive to bad measurements. If not handled well the solution will depart 

from the true trajectory. The least squares filter always tries to minimize the sum of 

the squares of the residuals. If the measurements are corrupted or poorly distributed, 

more weight will be put on the parametre part in the filtering process because the 

parametres are more sensitive, thus making this parametre take more responsibility 

than it should. Usually this results in a solution that is far beyond the dynamical 
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boundary; of course sometimes the solution is still accurate, but the revised dynamic 

model is only valid for the current batch of data and is definitely not suitable for the 

next batch or for orbit prediction.  

 

Another problem is the correlation between parametres if more than one orbital 

parametre is estimated. In the filter an assumption is made that all the parametres 

inependent, thus resulting in a diagonal state transition matrix. However, in reality 

some parametres are correlated, such as the drag and solar pressure coefficients. It is 

very hard to give apriori covariance information to these parametres. Some biases 

will be introduced by the parametre estimation. 

 

From this consideration, and based on LEO dynamic model characteristics, a set of 

parametreization schemes was carefully selected, as indicated in Table 6.2. The table 

only lists some suggestions based on our experiment and data set selection. Actually 

this setting should be mission specific, for example, only solar pressure parametre is 

enough for T/P. For FedSat, though it is on a 780km altitude, the drag coefficient is 

not necessary because of the small and regular shape of the satellite.  

 

Table 6.2 Parametreization schemes for LEO short-arc filter. 
Scheme Parametres Characteristics 

I 6 state vector only Most stable, suitable for extreme short-arc, like 
10~15 minutes. 

II I + drag coefficient 
Sensitive to errors and high correlation to the 
velocity estimation, but this scheme is suitable for 
a typical LEO mission. 

III I + drag + solar 
pressure correction 

Account for all the along track model error, high 
accuracy but unstable. 

 

Depending on different situations, two short-arc strategies are considered in this 

research: discrete short-arc filter and sliding-window short-arc. The details are 

described below. 
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6.3 Short-arc Least Square Filter 
 

6.3.1 Introduction 

 

From previous analyses, if precise measurements are available a short-arc filtering is 

preferred for onboard orbit determination. As its name implies, the short-arc filter is 

a least squares estimator using a small set of GPS measurements, and it processes the 

data batch by batch in a forward direction. The arc length depends on different 

requirements: it can be from 15 minutes to 2 hours, or longer. The basic concept of 

the short-arc filter is illustrated in Figure 6.2. 

          

 
Figure 6.2 Concept of short-arc orbit determination. 

 

6.3.2 Discrete Short-arc Techniques 

 

The basic short-arc filter processes every single batch separately, the measurements 

are discarded after the process, and no relation exists between the adjacent batches. 

That is, the orbit solution is available only after all the measurements in this batch 

are collected. This results in a time latency from 15 minutes to 2 hours. Obviously it 

is not an optimal strategy for onboard usage. However, sometimes this is the only 

feasible choice because no continuous GPS measurements are available. For many 

micro-satellites, due to the power or computer capacity limit, the GPS can only 

operate a short time for every one or two orbits. With FedSat, for example, only 15 
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minute GPS data is available for every orbit revolution of about 100 minutes in 

length. Using the discrete filter a satisfied solution can still be obtained for these 

missions.  

 

6.3.3 Sliding-window Short-arc Techniques 

 

If continuous (for at least several hours) GPS measurements are available onboard, a 

more effective short-arc filter can be used. Instead of collecting the data batch-by-

batch, the sliding-window filter only updates several minutes of the measurements, 

and processes the new data together with the old data. In this way, the processing 

will step forward every several minutes but still process the whole set of data. Figure 

6.3 illustrates this concept. The update depends on the short-arc length, which 

typically can be from 5 minutes to 30 minutes. In this way the orbit solution will be 

available in several minutes, which is suitable for onboard real time or near-real time 

applications.  

 
Figure 6.3 Concept of sliding-window short-arc filter. 

 

Another advantage of this method is that it can decrease the onboard CPU time and 

memory usage for the following three reasons: 

 

• Measurements from the last batch are used in the new batch, and some 

calculation results can be stored for current usage, such as carrier-phase 

smoothing results, GPS broadcast ephemerides transformed to the ECI 

coordinate system, and GPS measurement model corrections. These results 

can be used for the next few batches, and this will greatly relieve 

computional burden because only new measurements need to be processed in 

every batch. 

Measurement updates

Short-arc process batches
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• The state vector solution in the ECI coordinate frame from the last batch can 

be also stored for following batch usage. It is used as the nominal orbit input 

to the new batch, and only the nominal orbit for the updated arc is calculated. 

Generally, the update arc is only about several minutes in length and the 

computional burden is minimized. However, this is only valid for the first 

iteration of the least squares filter because the initial state vector and 

parametres have been corrected after the first iteration, and a new nominal 

orbit must be generated based on this new information. That means the full 

arc orbit integration is needed from second iteration. On the other hand, 

because the filtering result of the last batch greatly benefits the current one by 

providing the precise nominal orbit and corrected parametres information, 

this results in fewer iterations and a more stable solution. 

 

• The state transition matrix can be treated the same way as the nominal orbit, 

that is, the first calculation of the state transition information is omitted. We 

know this will relieve the calculation burden because the solving of second-

order variational equations is a time-consuming job. However, unlike the 

nominal orbit, the previous state transition matrix needs to be mapped to the 

current initial epoch before it can be applied to the current calculation (See 

Figure 6.4). The last batch begins from 0t  to kt , all the partials are calculated 

with respect to epoch 0t . New updates begin from kt  to nt , and the new 

partials are related to epoch kt . Because of the sliding-window the data from 

0t  to it  is discarded, and the partials from it  to kt need to be mapped to kt  

instead of 0t . In this way a new estimation will made at kt . The state 

equation for the last batch can be written regarding transition matrix ,k0Φ  as: 
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Figure 6.4 State transition matrix mapping in sliding-window short-arc filter. 

 

The new state transition matrix is stored with other data at every batch. We can see 

that the first iteration in the filter is really fast due to most calculation having already 

been done in the previous batch. Only data from new updates are calculated. In most 

cases, after the first iteration with precise filtering information from previous data, 

the convergence speed is fast, a normally one or two more iterations is enough. 

Based on the previous discussion, a sliding-window filter is an optimum choice for 

onboard processing (more experimental results will be presented in the next section). 

 

Furthermore, we observed distinct edge effects from previous short-arc results, 

especially for the shorter arcs. This is because the whole integration arc is considered 

equally in the least squares filter, but the orbital model error grows with time, and 

best result is around the middle of the arc. To circumvent this effect we use a 

different method in this test to get remove the solution either side of the arc. 

Obviously we have to use overlapping data to generate a continuous solution. 
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6.4 Experiment Results 
 

6.4.1 Long-arc OD 

 

For comparison, best filtering results are presented here using one day SACC GPS 

data. A full orbital model and IGS solution was used. To compare the result with the 

following short-arc ones we did not use high parametreization schemes, only two 

orbital parametres were estimated. Table 6.3 summarizes the OD data processing 

strategies. Figure 6.6 shows the position and velocity error compared to JPL precise 

solution. It can be seen that a 3D positional accuracy of 80 cm was achieved, while 

the 3D velocity error is 2 mm/s. The result is quite reasonable because only code 

measurements were used. All the results below were compared against JPL 

ephemerides, which have centimetre level accuracy. 

 

Table 6.3 Long-arc OD data processing strategies. 
Orbit force modelling 
Earth Gravity Model JGM 3, 70x70 
Third body gravity Sun & moon, all planets except Pluto 
Planet ephemerides JPL DE405 
Solar pressure Direct effect 
Atmospheric density model MSIS 86 
Pression / Nutation IAU1976 / IAU 1980 (with corrections) 
Polar motion IERS bulletin B 
  
GPS Data Processing modelling 
P code noise threshold 5m 
GPS ephemerides IGS final solution 
Carrier phase smoothing Every 15 minutes 
GPS Data processing mode Ionosphere free P code with single difference 
  
Estimation Strategy 
Filtering arc 1 day batch 
Parametre estimation 8 (6 state vector, drag and solar pressure coefficients) 
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Figure 6.5 24 hours OD result for SACC using broadcast and IGS ephemerides. 

 

6.4.2 Discrete Short-arc Results 

 

As described in Section 6.3.3 discrete short-arc means batch-to-batch and that there 

is no correlation between each batch. Three days’ SAC-C GPS data has been 
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processed using different arc lengths: 15 minutes, 30 minutes, 1 hour, 2 hours, 3 

hours and 4 hours. The main purpose of this test is to estimate the achievable orbit 

determination accuracy with short arcs. The full orbital model mentioned in the 

previous section was used and orbital parametres were estimated. The 3D RMS orbit 

errors for every option are illustrated in Figure 6.7. It is observed that the best result 

was achieved by a 2 hour arc. Longer arc filtering generated even worse results, 

which suggests orbit system error exceeds the measurement noise level as the arc 

becomes longer than 2 hours. Figure 6.8 shows the RMS error in the along-track, 

cross-track and radial components. Figure 6.9 shows the velocity error. 

 

6.4.3 Sliding-window Short-arc and Parametreization 

 

The performance of sliding-window short-arc filtering was also tested. Table 6.4 lists 

the window sizes and update rates for the different schemes. The window size is 

around 3 times the update rates, so we can use 66% of the data as solutions from 

every batch. The results are presented and discussed in the next section. 

 

Table 6.4 Sliding-window short-arc data selection overview. 
 update rates (minutes) overlap length 

(minutes) 
pre-overlap (minutes) 
Discarded measurements 

15 minutes 3.0 6.0 3.0 
30 minutes 5.0 10.0 5.0 
1 hour 10.0 20.0 10.0 
2 hours 20.0 40.0 20.0 
3 hours 60.0 60.0 30.0 
4 hours 80.0 80.0 40.0 

 

Furthermore, orbit parametre estimation was introduced. We used two schemes: 

• I:   atmosphere drag coefficient 

• II: atmosphere drag coefficient and solar pressure coefficient 

 

When scheme II was considered only longer arcs (1~4 hours) were tested because 

the estimation process is unstable with very short arcs. All the results are presented 

in the next section. 
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Figure 6.6 Illustration of discrete short-arc estimation results using different arc 

lengths. 



 166 

 
Figure 6.7 Comparison of the along-track, cross-track and radial orbital error for all 

the discrete short-arc schemes. 

 
Figure 6.8 Comparison of the velocity errors for all the discrete short-arc schemes. 
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6.4.4 Error Analysis 

 

Based on the filtering results of the previous sections, experiments were carried out 

to study the filtering residuals with different arc lengths for LEO Orbits. The 

following aspects were inspected: 

• Pre-fitting and post-fitting residuals were analyzed. We want to distinguish 

the errors caused by different sources, such as orbital model error, 

measurement model and measurement noise. The use of the JPL precise 

ephemerides results this split to be made. 

• Orbital model errors caused by different arc length, and the parametre 

estimation results in a short-arc filter. 

• The effect of different weighting schemes on the residuals. 

• The batch filter convergence speed, as this greatly affects the computional 

efficiency.  

 

Figure 6.9 compares all short-arc filtering schemes. We found that filtering with 

sliding-windows of 2-to-4 hours and 7 or 8 parametres (6 states+1 for drag 

coefficient +1 for SRP), usually gives good results, achieving 3D RMS of 1.3 m. 

Figure 6.16 compares the pre-fit residuals of the OD filter for all the short-arc 

filtering schemes, showing the residual growth with the data arc.  
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Figure 6.9 Comparison of 3D RMS for all the short-arc filtering schemes. 

 
Figure 6.10 Comparison of pre-fit residuals of OD filter for all the short-arc filtering 

schemes. 
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Figure 6.11 Post residuals of OD filter for all the short-arc filtering schemes. 

 
Figure 6.12 Comparison of computational burden for all the short-arc filtering 

schemes. 
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Figure 6.13 Comparison of state vector corrections RMS for all the short-arc 

filtering schemes.  

 
Figure 6.14 Estimated drag coefficient from the sliding-window short-arc filtering 

with 1 parametre configuration. 
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Figure 6.15 Estimated drag coefficient from the sliding-window short-arc filtering 

with 2 parametres configuration. 

 
Figure 6.16 Estimated solar pressure coefficient from the sliding-window short-arc 

filtering with 2 parametres configuration. 
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Figure 6.17 Overlap positional errors from non-parametreization sliding-window 

short-arc results. 
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Figure 6.18 Comparison of overlap positional 3D RMS error from sliding-window 

short-arc results. 

 

6.4.5 Accuracy vs. Computional Burden 

 

After the proposed techniques discussed in Chapters 3, 4, 5 and 6 have been 

combined into the short-arc filter, the overall orbit determination performance was 

tested. We used the simplified orbit dynamical model introduced in Chapter 3, but 

with the Earth gravity acceleration approximation method. In addition we used the 

sliding-window carrier-phase smoothing method combined with the simple outlier 

detection algorithm discussed in Chapter 5. We used the sliding-window method 

because it generally outperforms its discrete counterpart. The position and velocity 

accuracies were compared with both the long-arc orbit determination and the 

onboard navigation solution. We also investigated the computional burden. Table 6.5 

lists the candidate test schemes. Figure 6.19 shows the orbit error in the along-track, 

cross-track, radial directions and 3D for all the short-arc filtering schemes, from SPP 

to long-arc OD results. Figure 6.20 illustrates the corresponding velocity errors. All 

results are with reference to JPL’s GIPSY-OSISS POD solutions accurate at 

centimetre level. In comparison with the long-arc orbital accuracy of 3D RMS of 
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0.8m, an accuracy of 1.2m was achieved with a 2-hour short-arc. For velocity, better 

accuracy is achieved with 2-hour short-arc data. 

 

Figure 6.21 compares the computional burden. The computing time compared long-

arc OD, SPP and sliding-window short-arc methods. It was observed that the 

computation time for 2-hour short-arc methods could be shortened from about 1000 

second to 30 seconds. This improvement is very significant for onboard orbit 

determination. 

 

Table 6.5 Short-arc filtering comparison test schemes. 
Schemes Method Orbital model Arc length Updates 
I SPP (IGS) - - - 
II 24 hours discrete arc Full 24 hours - 
III Sliding-window short-arc Simplified 30 minutes 10 minutes 
IV Sliding-window short-arc Simplified 1 hour 20 minutes 
V Sliding-window short-arc Simplified 2 hours 40 minutes 

 

 
Figure 6.19 Comparison of the along-track, cross-track, radial and 3D orbital error 

for all the short-arc filtering schemes with SPP and long-arc OD results. 
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Figure 6.20 Comparison of the along-track, cross-track, radial and 3D velocity error 

for all the short-arc filtering schemes with the long-arc OD result. 

 
Figure 6.21 Comparison of computing time for all the short-arc filtering. 

 

6.5 Summary 
 

A dynamic approach is necessary for onboard orbit determination at different 

altitudes in order to achieve metre-level orbit accuracy and provide continuous orbit 
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solutions in circumstances where there are few GPS observations.  

A simple but robust dynamic method has been proposed based on short-arc batch 

estimation, in order to address both orbit accuracy and computional burden issues 

critical for onboard orbit determination with GPS code measurements. 

 

Furthermore, the sliding-window short-arc method can fulfill the requirement for 

near-real time onboard orbit determination onboard. It updates the processing arc 

every 5 ~ 40 minutes, and generates the orbit solution with 5 ~ 40 minute delays, 

with high accuracy, after the last observation. The computation time for the process 

takes several seconds to 20 seconds to complete using a PIII processor. 

 

The experimental results from three day data sets of the SAC-C mission have 

demonstrated that use of the shorter data arcs allows for simplifications of both the 

physical and observational models. We can make the following conclusions for 

SAC-C: 

 

• With a data arc as short as 30 minutes, a 3D position RMS error of 2.5 m and 

3D velocity RMS error of 5 mm/s can be achieved with 5 minutes latency. 

The solution is more stable than that of a traditional Kalman filter, and it 

doesn’t require any initialization process (which is around 4~6 hours for a 

typical Kalman filter). Furthermore, the computional burden is comparable to 

Kalman filter processing. 

 

• With a data arc of 1~2 hours, a 3D position RMS error of 1 m and 3D 

velocity RMS error of 2 mm/s can be achieved with 10 ~ 20 minutes latency. 

The radial component position accuracy was 40 cm, which can satisfy many 

scientific applications. The accuracy is nearly reaching that of a ground-

based long-arc OD using the same data sets (smoothed code, standalone) 

with much less computing burden. 

 

In summary, the result achieved with the proposed short-arc strategies is quite 

encouraging and promising, suggesting a new method for onboard orbit 

determination. 
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Chapter 7 

Orbit Determination for FedSat 
 

 

 

The above chapters focus on models and estimations issues, including simplification 

of orbital models, improvement of measurements and development of short-arc 

estimation strategies. In this chapter, we present the results from FedSat orbit 

determination mission and tracking. This section, on the one hand, will further verify 

the theory and concepts proposed models and methods, and on the other hand, 

demonstrate the effects of the proposed strategies in a ground-based near-real time 

precise orbit determination system for FedSat, which has supported the FedSat 

scientific missions, such as Ka-band tracking and GPS atmosphere studies, within 

the CRCSS community, since its successful launch in December 2002.  

 

7.1 Overview of FedSat 
 

Although Australia was the third nation in the world to be able to launch a satellite in 

the 1960s, it is some thirty years since WRESAT, a small amateur satellite was 

launched. This situation changed in 1997 with the establishment of the Cooperative 

Research Centre for Satellite Systems (CRCSS) under the Australian Government’s 

CRC Program. The first and primary project of the CRCSS is to launch a low Earth 

orbiting microsatellite, FedSat, into an 800 kilometre circular polar orbit with an 

inclination of o7.98 . FedSat was successfully launched into the orbit at the 

Tanegashima Space Centre in Japan on 14th December 2002, and has been operating 

for the following three years. 

 

FedSat is not a mission dedicated to a single scientific or engineering goal. Instead, it 

carries a range of experimental research payloads, which are based on the 

engineering and scientific activities of the participants in the CRCSS, in order to 

gain experimental information. These CRCSS activities are focused under four 



 178 

programs, the Space Science Program (University of Newcastle, NSW; La Trobe 

University, Melbourne), the Communications Program (University of South 

Australia, Adelaide; University of Technology, Sydney) and the Satellite Systems 

Program including navigation and high performance computing (Queensland 

University of Technology, Brisbane). The payloads include a fluxgate magnetometre, 

Ka-band satellite communication system, a GPS receiver and a high performance 

computing platform. 

 

The GPS payload of FedSat, the BlackJack Receiver, is a joint project between 

CRCSS and NASA, USA. It is a space enabled specific receiver, costing about 

US$500,000. It can provide real time orbit and time information for the onboard and 

ground scientific usage. Figure 7.1 shows the FedSat mission launch phases. Figure 

7.2 shows the FedSat in the assembly laboratory and deployment in space. 

Time

LEOP Commissioning

Separation

Payload
Check-out

-Nominal Operations
-Measurement Campaign

Launch

Late December 2002 March 2003Mid December 2002

 
Figure 7.1 FedSat payload mission phase. 
 

 
Figure 7.2 FedSat in the assembly laboratory (left) and deployment in space (right). 
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7.2 Orbit Determination of FedSat 
 

7.2.1 Introduction 

 

A low Earth orbiting (LEO) satellite collecting GPS data with an onboard GPS 

receiver can compute its state (position & velocity) in diverse ways, the choice 

depending on, in part, the type of orbit and mission requirements. FedSat, like many 

other LEO satellites, uses GPS for engineering and scientific missions. The 

requirements for orbit knowledge include: 

• Real-time state knowledge for routine tracking operations and onboard 

engineering needs. A 3D RMS accuracy of hundreds of metres is needed. 

• Near real-time orbit state knowledge for space-based Wide Area Differential 

GPS positioning studies and FedSat Doppler positioning testing, requiring an 

accuracy of metre-level or better. 

• After-the-fact precise orbit determination for scientific analysis, such as GPS 

atmospheric sounding, to achieve orbit accuracy of a few decimetres or better. 

 

A large number of the existing GPS flight experiments have demonstrated that GPS 

can meet the stringent needs for the most dynamically unpredictable flight vehicles 

with continuous tracking of GPS satellites. The principal difference between FedSat 

and other GPS-based LEO satellites is that FedSat onboard GPS data collection will 

not be continuously carried out due to the limitation of power supply. More 

specifically, only a total of 20 minute time per orbit period, which is about 100 

minutes, will be allocated to GPS continuous operation. This tracking scenario 

changes almost everything: from achievable orbit accuracy of different levels, to 

techniques for improved real time positioning and orbit determination. 

 

7.2.2 Problems with FedSat Orbit Determination Using GPS 

 

7.2.2.1 Duty Cycle GPS Operation Mode 

 

Unlike many other GPS-based LEO satellites, the FedSat flight GPS receiver only 

operates in duty-cycle mode, or 20 minutes per orbit (100.9 minutes) due to the strict 
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limitation of power supply onboard the satellite, although it may occasionally turn to 

continuous operation for precise orbit experiments. Pre-launch testing revealed that it 

took 4 to 5 minutes for the GPS receiver to start normal operation after power supply 

is available. This means there will be observations of 1-by-15 minutes per orbit 

effective for orbit determination.  

 

Knowing the achievable orbit accuracy under specific operation conditions and 

processing modes was of primary concern to the operators. Our pre-launch 

covariance analysis was given towards the 1-by-15 operations [Feng, 1999, 2000]. It 

is now necessary to study the orbit accuracy in the cases of 1-by-15 minutes 

operations. Because a filtering processing is unlikely to proceed onboard the FedSat, 

we must use the flight GPS data downloaded each day to compute and typically 

predict the orbit into future 24 to 48 hours for real time operation use on the ground.  

 

Results show that under the assumption of expected GPS standalone positioning 

performance where the 3D positional RMS accuracy about 10m to 15m, the effective 

data set of 1-by-15 minute per orbit for 24 hours can still result in quality predicted 

orbit for 48 hours. The predominated errors in the predicted orbit are the uncertainty 

of atmospheric force, which alone would reach 80 metres within 72 hours of 

prediction. The second largest modelling errors, solar radiation pressure, will lead 

the orbit errors of less than 10 metres. Considering all the effects including the 

atmospheric drag, the accuracy requirements of 100 metres in each component can 

be satisfied within two days of prediction. Figure 7.3 shows the GPS observation arc 

for FedSat. 
North

GPS observation arcs 

North

GPS observation arcs  

Figure 7.3 FedSat GPS duty cycle operation. 
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7.2.2.2 Aft-looking GPS Antenna 

 

Normally in a LEO satellite mission, an upward-looking antenna is used for onboard 

navigation, timing and precise orbit determination purposes, and the antenna 

mounted towards other directions are used for different scientific missions. FedSat 

collects GPS data with its only aft-looking antenna, for both orbit determination and 

other scientific applications such as atmosphere occultation. As a result, only two-

thirds of the hemisphere can be observed, and about half the measurements are 

collected at negative elevations. Figure 7.4 illustrates the image of the FedSat and 

the GPS antenna looking towards the anti-velocity direction. According to the 

altitude of the FedSat and the radius of the Earth, the negative elevation will reach –

27.5 degrees. Therefore, the field of view of the aft-looking antenna is nearly two-

thirds of the hemisphere. The mask angles for orbit determination or positioning are 

90 and –25 degrees respectively. The satellites with the elevations between –25 and 

–27.5 degrees maybe occulted, and their measurements can be used for atmospheric 

occultation studies [Yunck, 2002]. 

 
Figure 7.4 FedSat aft-look GPS antenna location. 
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Figure 7.5 shows how the FedSat aft-looking antenna views the GPS satellites in 

two-thirds of the sky, that is, the scope of elevation from –27 to 90 degrees. To avoid 

the effect of the atmosphere under 100km on the measurements, we can set the mask 

angle of –25 degrees in the process. The signals with elevation angles between –25 

and –27 degrees are subject to the tropospheric delays, which, can be used for 

atmospheric occultation studies. In fact, due to the effect of occultation, the signals 

with elevation between –27 to –28.5 degrees are often received in the FedSat orbit. 

Our experiment result illustrates the distribution of the measurements against the 

elevation angles. We have observed that the majority of the measurements are 

collected with the elevations of under 20 degrees. The result is presented in the 

following sections.  

 

FedSat
30 deg

90 deg

Not visible

FedSat orbit 
determination

GPS occultation 800km

 
Figure 7.5 GPS measurement scenario in FedSat. 

 

7.3 FODT Software Package 
 

7.3.1 Introduction 

 

To facilitate the research work and engineering application, a comprehensive GPS 

orbit determination software package, FedSat Orbit Determination and Tracking 

Software (FODT) has been developed during this research. Based on previous work 
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done in CRCSS, FODT has been developed by the author to perform the orbit 

determination using GPS for FedSat. It can fulfill the following tasks: 

 

• Dynamic model analysis; it contains a full set of precise orbit dynamic model 

implementation. The first and second order partial derivatives of the state 

vector and parametres with respect to the initial parametres also have been 

fully implemented using precise models. 

• High accuracy orbit integrator for short or middle term. Several numerical 

methods are implemented in the software, including 4th Runge-Kutta, 7/8th 

Runge-Kutta, 6/4th Runge-Kutta-Nystrom and 4th order Integra Equation 

Method. 

• Precise Point Positioning (PPP) for spacecraft with or without the IGS 

precise ephemerides products. 

• Near real time orbit determination (OD) using GPS measurements for LEO 

orbiters. 

• Comprehensive GPS code/phase measurements analysis tools, which can 

give a detailed report of GPS measurement quality. This can be done in a pre 

or post process sense. 

• Furthermore, FODT also provides a powerful real-time software 

development scheme for onboard orbit determination algorithm validation. 

 

 
Figure 7.6 FODT software interface in DOS environment. 
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From the very beginning, FODT was designed as a modulated software package. It is 

in a third-tier logical structure. It contains a basic library, which provides more than 

600 common functions to the upper level modules; each level two module can fulfill 

a single logical operation, such as data edit, GPS ephemerides calculation, single 

point positioning, etc; In level three, some scripts are used to configure and link level 

two modules to accomplish a complicated job. Figure 7.7 illustrates this concept.  

 

From the programming point of view, FODT has been coded using ANSI C and 

FORTRAN; it contains 15 modules, more than 300 source files and around 70,000 

lines of source code in total. 

 

Figure 7.7 FODT software module structure. 

 

7.3.2 Orbit Determination Module 

 

Among all the modules in FODT, the most important one is the precise orbit 

determination module. It is used to support the FedSat Ground Autonomous Ka-

Band communication system tracking. As showed in Figure 7.8 it contains four parts: 

Level 1: Basic library 

Level 2: Functional module 
 

 
 
 
 
 
Level 3: Job script 

PPP OD Orbit 
integration …… 

Level 1: 
Basic

Math 
functions 

Time 
System ...... 

...... 
Geodetic 
functions 

Data edit GPS 
Ephemerides 

Orbit model

LS Filter

GPS SD Equation 

……
…… 
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data acquisition and fitting, orbit modelling, measurement modelling, orbit filtering 

and orbit prediction.  

 

The Data Edit (DE) module reads flight RINEX file, detects and excludes the 

outliers in code measurements, based on statistics of linear combination of code and 

phase observables. This process depends on flight measurements only, and is 

independent from Selective Availability, satellite orbit and geometry. The criteria for 

acceptance or rejection of a measurement vary from mission to mission in each 

procedure, achieving a balance between information quality and quantity for overall 

orbit accuracy. This module outputs a file of clean and standardized RINEX file for 

follow-up processing. 

 

Orbit Modeling (OM) module, operated as a stand-alone program and subroutine, 

computes spacecraft orbits using numerical integration. OM starts from specified 

initial orbits, uses several forces models to integrate the differential equation to 

produce a nominal orbit, which is a set of time-tagged state vectors, together with the 

partial derivatives that relates the current states to the epoch-state, which is at the 

beginning or the end of the data arc. Two numerical integration methods have been 

built into OM to create an orbit trajectory and partial derivatives simultaneously: an 

adaptive-size fourth-order Runge-Kutta Method based on differential equation and a 

fixed-size Integration Equation (IE) method as described in Feng [2001]. 

 

Measurement Modeling (MM) module calculates the GPS orbit and clock bias from 

either broadcast or IGS ephemerides, then establishes the linear relationships 

between GPS measurements and the epoch state of the orbit. First, it computes the 

theoretical distances between using the nominal orbit of the spacecraft and GPS 

orbits, and then forms the pre-fit residuals with the range observations. Next it 

computes the design matrix of the partial derivatives of the ranging measurements 

with respect to the state elements, which include at a minimum, the adjustments to 

the six state parametres, and may include the adjustments to physical parametres: 

solar radiation pressure (SRP) as well as atmospheric drag coefficients. A detailed 

discussion of construction of the observation equation may be seen in Liu [2000], 

Feng [2001] and Yunck [1996].  
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Orbit Filtering (OF) module is a batch least squares estimator, which estimates the 

set of six state parametres along with some physical parametres, such as atmospheric 

coefficients and solar radiation pressure coefficient, using the data over a period of 

hours to days. 

 

Orbit Prediction (OP) module consists of orbit integration and orbit representation 

processes. Orbit integration uses the improved epoch-state and estimates of physical 

parametres instead, propagating 2 to 3 days forward for real time FedSat tracking 

use. These orbit solutions are presented in a given format and time steps, such as SP3 

at 60 seconds, in both Earth centred and Earth Initial (ECI) and Earth-Centred and 

Earth-Fixed (ECF) coordinate systems. Orbit Representation uses a polynomial 

function, such as Chebyshev polynomial, to represent the orbit as a continuous 

function of time segment by segment. This process must not lead to loss of orbit 

accuracy.  

         

Figure 7.8 Orbit determination module. 
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7.4 FedSat GPS Data Quality Analysis 
 

After the initial testing process, GPS flight data has been collected. Table 7.1 and 7.2 

summarizes the data set collected for our experiments. The following sections will 

discuss the results in detail. 

 

Table 7.1 Experimental dataset overview. 
 30/31 01 02 03 08/09 014 

# of data arcs 13 7 2 2 7 1 
Arc length (min) 5 to 15 minutes 

Onboard navigation Solutions Given at rate of 10 seconds 
Raw GPS data Recorded at 1-second 

 
Table 7.2 GPS raw data overview for days 364, 365 2002. 

File Epochs Observations SVs < 4 SVs >= 4 average 
SVs 

fed36402.obs 9734 56005 1339 (3694 ) 8395 (52311 ) 5.75 
fed36502.obs 714 3654 2 (4 ) 712 ( 3650) 5.12 

Continue 
File Arcs Min Arc length Max Arc length Average arc length 

fed36402.obs 14 380s 974s 698s 
fed36502.obs 1 777s 777s 777s 

 

7.4.1 GPS Measurement Quality Analysis 

 

Firstly, the GPS measurement quality is of concern, because FedSat only has one aft-

looking GPS antenna onboard. The GPS satellite visibility is poorer than other 

satellites with up-looking antenna. Figure 7.5 shows how the FedSat aft-looking 

antenna views the satellites in the two-thirds of the sky, that is, the scope of elevation 

from –27 to 90 degrees. To avoid the effect of the atmosphere under 100km on the 

measurements, we can set the mask angle of –25 degrees in the process. The signals 

with elevation angles between –25 and –27 degrees are subject to the tropospheric 

delays, which, can be used for atmospheric occultation studies. In fact, due to the 

effect of occultation, the signals with elevation between -27 to –28.5 degrees are 

often received in the FedSat orbit. Figure 7.9 illustrates the distribution of the 

measurements against the elevation angles. We have observed that the majority of 

the measurements are collected with the elevations of under 20 degrees.  
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Figure 7.9 Number of measurements with respect to elevation angles of FedSat GPS 
data on day 364 and 365 of 2002.  
 
During the initial operational period, the GPS receiver onboard the spacecraft turns 

on for 20 minutes for every orbit of about 100 minutes. After each cold start, it takes 

normally 1 to 5 minutes for the receiver to reacquire the signals from GPS satellites, 

and to capture four satellites for navigation solutions. Figure 7.10 illustrates the GPS 

operation times in these data sets. 

 
Figure 7.10 FedSat GPS operation arcs for day 364 and 365 of 2002. 
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7.4.2 P-code Ionospheric Delay 

 

Generally, from the pure mathematical sense, the ionosperic delay can be expressed 

as the difference of both P-code pseudoranges: 

 ionI dPPP ≈−= 12         (7.1) 

Figure 7.11 illustrates the P-code ionospheric delay on day 364 and 365 of 2002. 

 

7.4.3 P-code Noise 

 

After the system errors have been removed from the GPS measurements, the 

positional accuracy is determined by the measurement noise and geometry only. The 

measurement noise includes the signal noise, hardware noise and multipath effect. In 

this chapter, the noise of both 1P  and 2P  were inspected using the following 

expression [Zhou, et al., 2003]: 

 ( ) ( )ttttt LLPPPM 11111111 −−−= ++ λ ,   

( ) ( )ttttt LLPPPM 21222122 −−−= ++ λ   t = 0, 1, 2…  (7.2) 

Here 1λ = 0.1903 metres for the frequency of 1f  (1575.42 MHz), and 2λ  = 0.2442 

metres for the frequency of 1f  (1227.60 MHz). tPM1  and tPM 2 mainly contain 

receiver noise and multipath errors. The standard deviations of the observations 1P  

and 2P  are given as: 

2
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1
21 PM

P
PM

P

σ
σ

σ
σ ==      (7.3) 

Due to possible variation of atmospheric conditions between epochs, (
1pδ and 

cpδ  

are conservative estimates to the standard deviation for the measurements 1P  and 

cP ).  

 

Figure 7.12 illustrates 1P  ranging noises against the elevations for the Day 364, 2002 

(upper) and Day 008, 2003 (lower), respectively. The overall 1P  range RMS values 

for the three data sets are 1.44m, 1.66m respectively. The RMS values are estimated 

excluding the 1P  ranging noises greater than 15 metres, which are 0.16%, 0.32% of 

total in the two cases. 
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Figure 7.11 P-code ionospheric combinations for all satellites on day 364 and 365 of 
2002. 
 

Figure 7.13 is the histogram of the 1P  ranging errors for the period of Day 083 to 

Day 086, 2003, showing a good normal distribution nature. The threshold of ± 5m 

was set for both RMS estimation and follow-up orbit estimation. 

 



 191

 
Figure 7.12 Illustration of 1P  ranging noises against the elevation for the Day 364, 

2002 (upper) and Day 008, 2003 (lower), respectively. The overall 1P  range RMS 

values for the two data sets are 1.44m and 1.66m respectively. 
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Figure 7.13 Histogram of the 1P  ranging errors on day 364 and 365 of 2002, 

showing their good normal distributed nature. 

 

Table 7.3 compares the RMS values from different satellite missions and FedSat data 

sets of different days against elevation angle. It is observed that the GPS data with 

elevation angle below 10 degrees are much noisier than those with higher elevation 

angles for CHAMP and SAC-C missions where flight data for orbit determination 

were collected using an up-looking antenna. In the FedSat case, we have viewed the 

following instead: 

• The overall RMS uncertainty/noise level of two FedSat data sets is constantly 

3 to 5 times higher than these for CHAMP and SACC data; 

• The data with elevation angle below -27 degrees is much noisier than those 

above -27 degrees; 

• The ranging noise level for negative elevation is not necessary higher than 

those for positive elevation; 

• The overall noise level of 1P  code measurements in the three FedSat data sets 

is about 1.6m showing a consistent data quality. 

 

We also found that there are some big jumps in the 1P , 2P , cP  measurements of raw 

RINEX data file. This jump happens to every satellite observed. We assumed this is 

due to the receiver clock jump and can not be grouped to the 1P , 2P , cP  errors; there 
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is a 9000km clock jump in this instance. From another point of view, we can see that 

there are big clock errors in FedSat GPS receiver sometimes.  

 

Table 7.3 Summary of the RMS values from different satellite missions and FedSat 

data sets of different days against elevation angles.   

Mission Receiver Day All 
Data 0<Elev.<10 10<Elev.<20 Elev.>25 

CHAMP BlackJack 3 days 0.53 0.93 0.64 0.42 
SAC-C TurboRogue III 3 days 0.32 0.73 0.46 0.17 
Topex Motorola 

Monarch 3 days 0.34 0.38 0.38 0.33 

  Day  Elev.<-27 -27<Elev.<0 Elev.>0 
FedSat BlackJack 364, 

2002 1.44 4.19 1.00 1.56 

FedSat BlackJack 008, 
2003 1.66 4.06 0.93 1.98 
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Figure 7.14 FedSat code noise on day 364 and 365 of 2002 compared with SACC 

and CHAMP. 

 

7.5 FedSat Onboard Navigation Solution (ONS) and Single Point 

Positioning (SPP) 
 

The FedSat onboard navigation solutions (ONS) are computed by the Blackjack 

receiver with all satellites in view, regardless of negative and positive elevations. 

Suffering from the large code noise and poor satellite geometry as indicated above, 

the FedSat ONS is expected to be much worse than the ONS in other missions.  

 

To evaluate the FedSat ONS solutions, we perform two types of comparisons:  
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• with independently computed single point positioning (SPP) solutions from 

the code measurements, to understand the consistence; and 

• with FedSat orbit filtering solutions, computed with the QUT FODT software 

as described in the next section 

 

Figure 7.15 compares the ONS and SPP 3D RMS values with respect to the FODT 

solutions for a period of 1050 seconds (105 epochs, ONS were given at 10 seconds), 

showing the consistence between the two solutions under normal observational 

conditions. It appears that the SPP solutions are more robust against some outlying 

code measurements. Under the worst geometry (large PDOP), both ONS and SPP 

solutions suffer from the outlying code measurements.  

 
Figure 7.15 Comparison of the ONS and SPP 3D RMS values with respect to the 

FODT solutions. 

 

Figure 7.16 plots the histogram of the ONS 3D positional errors, which indicates a 

long-tale normal distraction of the ONS positional errors. According to this 

histogram, the δ1  of 3D error is less than 40m. However, the 3D orbit errors with 

the 95, 97, and 99 percentiles reach 200m, 400m and 800m respectively. Statistical 

analysis based on the ONS errors falling within 95 percentile shows a 3D RMS of 

57m, with means values of 9.3, -0.7, and –8.3m for the x, y, and z components 

respectively. Figure 7.17 is a scatter plot for the ONS positional errors within the 

range of ± 200 m.  
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Figure 7.16 Histogram of the ONS 3D positional errors, indicating a long-tale 

normal distraction of the ONS positional errors. 

 
Figure 7.17 FedSat ONS positional error scattered within the range of ± 200m. An 

overall 3D RMS value based on the error of this range is estimated at 57m, which is 

about three times of the CHAMP ONS 3D RMS value. 
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7.6 Orbit Determination for Ground Ka-Band Tracking 
 

7.6.1 Introduction 

 

FedSat is a low Earth orbiting micro-satellite, which conducts space science, 

communications, Earth remote sensing and engineering experiments. The satellite 

flies the BlackJack spaceborne GPS receiver to compute its position and velocity for 

routine tracking operations, platform engineering needs (time keeping), as well as 

scientific experiments such as orbit determination (OD) and GPS occultation studies. 

Of all the above applications, the most restrict engineering need is specified by the 

Ka-Band tracking, requiring a pointing accuracy of o03.0 . As shown in Figure 7.18, 

the allowed orbit error r∆  is approximately expressed as the function of the pointing 

error β∆ , elevation angle β , and altitude of the orbit: 

)(
180

βρπβ∆=∆r        (7.4) 

Allowed 
orbit error 
(∆r)Allowed 

pointing error 
(∆β=0.01deg)

Range to FedSat:
ρ ≥800km

Allowed 2D orbit error:

Allowed  1-D orbit error:

2/rCA ∆=∆=∆

Elevation 
angle β

)(
180

βρπβ ••∆=∆r

 
Figure 7.18 The accepted orbit error expressed as the function of the 

pointing error β∆ , elevation angle β  , and altitude of the orbit for FedSat 

ground-based Ka-band tracking. 
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Figure 7.19 Accepted orbit error with respect to elevation angle. 

 

Figure 7.19 plots the allowed orbit error against the elevation angle. It is observed 

that the most restricted orbit accuracy is required where the satellite passes over the 

zenith direction, o90=β . For the case of FedSat orbit, the requirement will be 

140=∆r m.  Only the errors in along-track and cross-track will affect the pointing 

accuracy. The accuracy requirement for each direction is 

1002/139 ≈=∆=∆ CA m (7.5) 

 

7.6.2 OD Processing Strategy in QUT Ground Base Station 

 

To satisfy the Ka-Band tracking demand, an automatic OD processing system has 

been developed in CRCSS QUT node. It was established around November 2002 by 

Willam Kellar and the author. From the launch date to May 2003, the system has 

been thoroughly tuned and automatically running since then. The system includes 

two parts: GPS data acquisition / decoding and OD processor. Based on the accuracy 

and time requirements, the OD processor was configured as the following: 
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Table 7.4 Ground OD data processing strategies for Ka-band tracking.  
Orbit force modeling 

Earth Gravity Model JGM-3, 50x50 
Third body gravity Sun & moon, all planets except pluto 
Planet ephemerides JPL DE405 

Solar pressure Direct effect 
Atmospheric density model MSIS 86 

Pression / Nutation IAU1976 / IAU 1980 (with corrections) 
Polar motion IERS bulletin B 

  
GPS Data Processing modeling 

P code noise threshold 5m 
GPS ephemerides IGS ultra rapid solution 

Carrier phase smoothing 15 minutes arc length 
GPS Data processing mode Ionosphere free P code with single difference 

  
Estimation Strategy 

Filtering arc / Prediction arc 1~2 days / 2~4 days 
Parametre estimation 8 (6 state vector, drag and solar pressure coefficients) 

Orbit representation method Chebyshev polynomial, 25minute segment 
 
 

Under the operation mode, every pass of GPS data is downloaded as soon as the data 

is available at the FedSat Control Centre. Meanwhile all the needed ephemerides 

data, solar activity data, geomagnectic data and IERS data are downloading by a 

robot program. OD processor will be launched after enough GPS data were 

successfully collected and decoded. Usually, the OD solution will be available 

within one day and will be placed on a restrict access ftp server for CRCSS 

community engineering and scientific usage. 

 

7.6.3 OD Results 

 

Orbit determination and prediction was performed for day 30-December, 2002 to 2-

January, 2003. Figure 7.20 is the comparison between Filtered orbit and onboard 

navigation solutions, showing some large uncertainties of a thousand metres in the 

navigation solutions, as the filter solution is a smooth orbit, which may have a 

systematic error growth, but no irregularities. Figure 7.21 compares the orbit 

determination result with results from SAC-C and CHAMP. Figure 7.22 shows the 

orbit four days prediction result compared with the onboard navigation solution 

(ONS). 
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Figure 7.20 Comparison between the FedSat FODT and FedSat ONS solutions over 

the filtering orbit of 24h (2:50,364 to 2:49 365, 2002) and the propagation orbit from 

40h to 98h (Days 001,002 & 003, 2003). 
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Figure 7.21 Illustration of mean, standard deviation (STD) and RMS values over the 

filtered orbit (Day 364/5, 2002) and predicted orbit on Days 001, 002 and 003, 2003. 
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Figure 7.22 FedSat Orbit filtering results compared with SAC-C and CHAMP. 

 

Figure 7.20 compares between the FedSat FODT solutions and FedSat ONS 

solutions over the filtering orbit of 24h (02:50, Day 364 to 02:49, Day 365, 2002) 

and the propagation orbit period from 40h to 98h (Days 1 ~ 3, 2003). The results 

show the agreement of ±120m with the ONS solutions at the end of the propagation 

period of 72 hours. Figure 7.21 compares the mean, standard deviation (STD) and 

RMS values of the filtering orbit for Day 364 of 2002 and the propagation orbits on 

Day 1, Day 2 and Day 3 of 2003. Figure 7.22 compares the filtering and ONS results 

between FedSat and SAC-C/CHAMP. According to these figures, we have obtained 

the following observations: 

• The STD values do not grow with the extension of the propagation arc from 

Day 1 to Day 3; the mean values show a steady growth when the prediction 

arc extends from Day 365 to Day 3; 

• The mean values basically reflect the filtering and/or propagation 

uncertainties, while the STD values reflect the uncertainties of the ONS 

solutions. If this is the case, we may indicate that with the given data sets 

analyzed, the FODT filtered orbit errors are in the order of ±10m in each 

component, while the predicted orbit errors in each component will be in the 

order of ±20m, ±60m and ±80m for 24 hours, 48 hours and 72 hours forward, 

respectively 

 

7.6.4 Covariance Analysis of Data Set 08403~08703 

 

For the data sets collected in the period of Day 83 to 87, we apply strict quality 

control procedures to excluding all the possible outlier measurements. For instance, 
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the 1P  measurements with associated MP1  errors beyond the thresholds of ±7.07m 

(5m for 1P ) were excluded before entry to orbit estimation. FODT is run to produce 

the filtered orbits for each day separately, and propagate the filtered orbit of the first 

day (Day 83) 96 hours forward. Figure 7.23 shows the difference between the 

prediction orbits from Day 83 and the filtered orbits over each day from 084 to 087. 

It can be clearly seen that the predicted orbit errors fall in the ranges of ±30m, ±70m, 

±120m and ±240m for the first, second, third and forth day, respectively.  

 
Figure 7.23 Difference between the prediction orbits from the end of day 083 of 

2003 and the filtered orbits over each day from 84 to 87 of 2003. 

 

7.7 FedSat Short-arc Processing 
 

7.7.1 Introduction 

 

Normally, the FedSat orbit determination solution of previous strategies comes out 

within one-day latency. This is sufficient for the Ka-Band ground tracking because 

we normally predict the orbit into the future about 2~4 days. But for some other 

applications that need ultra rapid orbit solution with high precision, previous method 

is not enough. These applications usually require metre level accuracy within several 

hours’ latency.  
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Based on the short-arc techniques in the Chapter six, a short-arc processor was 

designed to generate a rapid orbit solution. Basically, the orbit modeling and GPS 

data processing strategy are the same as the long arc one except: 

• Orbit modeling: for the short-arc processing, the GPS measurement number 

is far less than the long arc one, it is not safe to estimate the osculate 

parametres like the drag coefficient if the GPS measurements are not precise 

and outlier-free enough. Otherwise the solution will fail due to wrong orbital 

parametre estimation. On the other hand, it is also very safe to ignore some 

osculate orbital parametres because the orbit propagate error due to modeling 

error is limited in short-arc. In the FedSat short-arc filtering case, the solar 

pressure and drag coefficients are fixed in the filtering process. We used the 

two values as: 

002.0=dragC  and 0008.0=solarC  

Thus, only six state vectors are estimated in the short-arc filtering. This will 

make the solution more stable. 

• GPS data processing: First, the SPP pre-processing is not carried out in the 

short-arc processing due to the time limit. Second, only broadcast 

ephemerides is used instead of IGS precise ones. This will greatly reduce the 

latency, but not reduce the precision too much. 

 

There are two ways to configure the short-arc processor. The first one is to process 

every short-arc separately. Due to the Duty Cycle operation mode of FedSat, we 

usually process one or two 15 minutes arcs in a short-arc processing, which is about 

one or two hours. After every single pass of data is downloaded, the processor can be 

launched and the solution will be available in minutes. The orbit prediction of 

several hours can be made from the filtering results. In this way, the solution can be 

available within tens minute latency. 

 

Another strategy comes from the idea of “Sliding-window processing”. Firstly, a 

longer arc of data, for instance, around 6 ~ 8 hours, is processed. As soon as a set of 

new 15 minutes data comes, a new data arc is formed by deleting the oldest 15 

minutes data. In this way, the filter will result in more stable accuracy solution and 
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longer prediction, but the latency will be around 1 ~ 2 hours due to longer processing 

time. 

 

7.7.2 Experiment Description and Results 

 

The short-arc experiments were carried out on day 364 and 365 of 2002. The arc 

length details in these two days have been given in Figure 7.10. Figure 7.24 gives the 

short-arc filtering results and compared with SPP. The 3D positional RMS was given. 

All the results were compared with 24h long arc OD results. 

 
Figure 7.24 Comparison of shot-arc OD results with long-arc OD. 
 

7.8 Ground-based Autonomous Orbit Determination System 
 

7.8.1 Introduction 

 

Although the previous ground orbit determination system has been running smoothly 

and generating a reasonable solution for some engineering projects, a more 

comprehensive precise orbit determination system is proposed. The new autonomous 

system is to provide the FedSat orbit solution at sub-metre level for scientific and 

engineering applications. Based on current work, this system was expected to be in 

operation in 2006. 
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7.8.2 Automation 

 

One of the most important goals of this system is the automation. This not only 

means it can automatically download, edit and process data but also means that it can 

automatically generate different OD strategies based on the data quality and OD 

performance analysis. The system will be running on a Windows XP server. After 

initial launch, it should continuously work without any human interference. The 

main automation features include: 

• Automatically downloading real time GPS data; daily broadcast ephemerides 

data, IGS data and sun flux data; monthly IERS data, geomagnetic data; 

yearly JPL planetary DE405 data. 

• Automatically generating all the configuration files for each OD modules 

based on current data set analysis.  

• Automatically running each OD modules, and also can stop and restart the 

whole system itself. 

• Automatically presenting the result in different formats and generate some 

simple text/graphic reports based on different requirements.  

• Automatic error reporting and logging. This includes process log and email 

alert functions. The main results and error message can be emailed to the 

persons who are in charge. 

 

7.8.3 Combined OD Strategy 

 

Generally, the system will generate ultra-rapid, rapid and final orbit filtering 

solutions using different strategies. In addition, a PPP solution also will be generated 

for ultra-rapid backup solution and analysis purpose. Another layer of this solution 

tier is a SGP4 one, it will be generated based on the analysis of several batches of 

final solutions. It aims to provide a long-term backup solution in case no 

measurements data are available. The system also will predict the orbit for one or 

two weeks using the final solution. 
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Not all the solutions will be generated at every processing; it depends on the 

application requirement and different processing situation. A set of options will be 

implemented to let the system know what strategy it should use. 

 

7.8.4 Accuracy and Stability 

 

For the final solution, sub-metre or even decimetre level accuracy is expected. It will 

be used for some high precision applications. For rapid solution, metres to sub 

metres accuracy can be achieved. For ultra rapid and PPP, metres accuracy is the 

achievable. For the SGP4 model, hopefully, hundreds metres to kilometers of 

accuracy can be achievable for a several months arc. 

 

The system is more stable because it can generate multiple solutions based on 

different and independent algorithms.  

 

7.8.5 OD Strategies 

 

The basic filtering scheme is to process 30 hours GPS data using current OD 

processing techniques, the beginning and ending three hours are used for covariance 

analysis. The middle 24 hours solution is used as a rapid solution. Seven consecutive 

rapid solutions are collected; the overlapped arcs are analyzed to generate a 

smoothing function. After that, a smoother is performed for the seven days’ data to 

generate the final solution. 

 

The ultra-rapid solution is generated using the “sliding-window short-arc” filtering 

technique introduced in Chapter 6. Normally the processing data arc is around 4 ~ 6 

hours, and the update frequency is every single pass (around 15 ~ 20 minutes). This 

ultra-rapid solution can be available in 2 ~ 4 hours. 

 

Precise Single Point Positioning (PPP) solution is generated after a single set of GPS 

observation data and the IGS ephemerides are available, the time latency should be 

around 1~2 hours. Usually, the accuracy of PPP for FedSat is worse than other 

missions, such as SACC, but a 3D RMS of 6 ~ 7 metres is still achievable with 
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precise PPP model.  If only broadcast ephemerides are used, the latency should be 

within half hour and the 3D RMS accuracy can be around 10 metres. 

 

For SGP4 model, a separate least square filter is used to generate the two line 

elements. Only final solutions are used in the filter for accuracy reasons. Because the 

limits of SGP4 model itself, the orbit propagation accuracy is only at several 

hundred metres. But it is very simple in computation because it is an analytical 

model and can be used for a very long arc, such as one or two months. The following 

figures illustrate these OD strategies. Figure 7.25 illustrates the details of different 

OD strategies. 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

Figure 7.25 Ultra-rapid solution, rapid solution and final solution concepts. 
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7.8.6 System Structure 

 

This system will be gradually constructed based on current autonomous orbit 

determination system. Figure 7.26 illustrates the system structure. 

 

 
Figure 7.26 Ground-based autonomous precise orbit determination system structure. 

 

7.9 Summary 
 

The research effort has been made towards the establishment of autonomous orbit 

determination system for FedSat. Based on the experiment results, we have the 

following findings: 

• The FedSat GPS data quality is three times worse than these achieved with 

data from other satellites missions with an up-looking antenna. 

• FedSat onboard navigation solutions have shown large uncertainties and 

irregularities: although a RMS accuracy of 56m was achieved, it was often 

with errors ranging from a few to several hundreds and thousands of metres. 

• Filtering processing over the 24 hours arc on 30, December 2002 provides a 

convergent estimation for drag parametre, thus resulting in the orbit 

positional errors of 120± m in the end of the propagation period of 72 hours. 

With the fixed drag parametre, the prediction errors reach 1.6km in the end of 
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120 hours (Day 8 of 2003). The result met the requirement of Ka-band 

ground tracking project. 

• The autonomous OD system in QUT has demonstrated the ability to provide 

tens of metres of FedSat orbit accuracy in half-day delay.  

• Preliminary short-arc orbit determination has been validated using FedSat 

data; the results show the potential to process data in near-real time. The 

short-arc filtering can generate 20 metres accuracy solution using 2~4 

revolutions data, which contains a data arc of 20 to 40 minutes.  

 

With the poor quality of data collected under poor observation conditions, the 

preliminary OD results are reasonable. Further research effort can be made combine 

the SLR and two line elements data into a current processing system, metre level 

accuracy can be expected with this multi-data-source system. Furthermore, the 

system should have the ability to provide different accuracy solution in near-real 

time and post-processing modes. 
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Chapter 8 

Conclusions and Recommendations 
 

 

 

8.1 Summary of Research Contributions 
 

Onboard GPS orbit determination is promising technique for enabling advanced 

space engineering and scientific applications. Metre to sub-metre 3D position 

accuracy is now possible in real or near-real time. In this thesis we have 

systematically studied the models and algorithms for GPS-based onboard orbit 

determination, and demonstrated various results using different experiments with 

flight GPS data. The research has addressed some scientific and engineering 

challenges in onboard orbit determination, and provided efficient technical strategies 

and solutions to these problems.  

 

This thesis focuses on the onboard orbit determination techniques and the proposed 

onboard orbit determination algorithms were successfully validated using real 

onboard GPS data collected from Topex/Poseidon, CHAMP and SAC-C satellites. 

 

8.1.1 Orbit Dynamical Models 

 

Onboard computing power is always limited. Therefore the orbit dynamic models 

are often simplified in current onboard orbit determination systems. As a result, 

achievable orbit accuracy has been limited to several to tens of metres. In this 

research a systematic study of orbital dynamic model simplification has been made 

for onboard computing. It includes Earth gravity model truncation, simplified solar 

& lunar ephemerides, simplified atmospheric density model, celestial parametre 

interpolation and integral equation integrator. All of these techniques together 

greatly reduce the computing burden while retaining metre level orbit integration 

accuracy. Furthermore, the Earth gravity acceleration approximation method was 
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studied and implemented. A pseudo-centre grid with appropriate interpolation 

functions replaced the traditional recursive algorithm. Consequently the computional 

burden is equivalent to that of a 55×  gravity model retaining the accuracy of a 

7070×  model. At the cost of a few additional Mbytes storage, which is not a 

problem for most onboard spacecraft systems. 

 

8.1.2 Orbit Estimation 

 

A Kalman filter can theoretically generate orbit solutions from epoch-to-epoch in 

real time with GPS measurements. The problem is that the stability of the solution 

cannot be easily brought under control. In other words, although theoretically a 

Kalman filter is ideal for onboard OD processing, in practice it is hard to balance 

between different noise and biases in the models and observations. Hence, the results 

may be easily affected by measurement outliers, causing the solution to diverge. 

Furthermore, the Kalman filter takes several hours of data to obtain a converged 

solution, which is quite long for many applications. On the other hand the traditional 

long-arc least squares estimation can give stable solutions, but it requires many 

observations and long processing time, as well as precise orbit models for good orbit 

accuracy. In this study, a short-arc least squares filter with sliding-window 

processing was developed, implemented and tested to assure stable solutions while 

keeping the computing time short. In addition, the short-arc technique can tolerate 

dynamic orbital modelling errors, providing good orbit accuracy without the need for 

precise orbit models. 

 

Based on experiments using SAC-C data, the following comments can be made: 

• With a data arc as short as 30 minutes, a 3D position RMS error of 2.5m and 

3D velocity RMS error of 5mm/s can be achieved with 5 minutes latency. 

The solution is more stable than that of a traditional Kalman filter, and it 

doesn’t require any initialization process (which is around 4~6 hours for a 

typical Kalman filter). Furthermore, the computional burden is comparable to 

Kalman filter processing. 

• With a data arc of 1~2 hours, a 3D position RMS error of 1m and 3D velocity 

RMS error of 2mm/s can be achieved in 10 ~ 20 minutes latency. The radial 
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component position accuracy was 40cm, which is adequate for some 

applications. The accuracy is approaching that of ground-based long-arc OD, 

though with much less computional burden. 

 

8.1.3 Quality Control and Improvement of Onboard GPS Data Processing 

 

The quality of onboard GPS measurements and navigation solutions is often worse 

than those obtained on the ground due to the harsh observation conditions in space. 

As a consequence, great care has to be taken to ensure improvement of the 

measurement quality by having reliable outlier detection algorithm for code 

measurements. In addition, if we take the GPS measurements at every sample epoch 

of 1~10 seconds directly, the nominal orbit and partial derivations need to be 

generated at these epochs, which in turn results in a heavy computional burden (as 

well as large onboard memory storage). To improve this situation, an optimal GPS 

data processing scheme was implemented that included a simple recursive outlier 

detection modules, a closed-form single point positioning algorithm (without need of 

initial coordinates to increase onboard autonomy), and a sliding-window phase 

smoothing algorithm to generate clean and compacted GPS measurements (further 

savings of storage and efficient onboard orbit estimation).  

 

The major results from the analysis and numerical studies can be summarized as 

follows: 

• We found that the best SPP result was achieved with 10 ~ 20 minutes of data 

smoothing. For sliding-window smoothing, the results are basically the same 

as with different window sizes, such as 1/2/5 minutes. Thus the 5 minutes 

window size with 10 ~ 20 minutes smoothing is a good choice for onboard 

processing. 

• The closed-form SPP algorithm generates positioning solutions with tens of 

metres of error. This accuracy can be achieved for 83% of measurements. 

Furthermore, the error is smaller than 10 km for 99% of measurement, which 

is still a good initial estimate for the subsequent orbit filtering process. 
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8.1.4 Ground-based FedSat Orbit Determination Software System 

 

Development and implementation of an orbit determination software system is a 

very challenging engineering task. Based on the same preliminary software at the 

CRCSS, a comprehensive GPS-based orbit determination software system has been 

developed as part of this PhD research effort. This software not only provides a 

technical platform for testing and implementation of the proposed new models and 

algorithms, but also leads to an operational orbit determination system for ground-

based near-real time orbit determination for the FEDSAT satellite launched in 2002. 

The system generates FEDSAT orbit solution with half-day latency on an 

operational basis. This autonomous FedSat orbit determination system has also 

supported the scientific missions of FEDSAT within the CRCSS community, such as 

Ka-band tracking and GPS atmosphere studies.  

 

The major results from the analysis and numerical studies are: 

• The FedSat GPS data quality is approximately three times worse than data 

from other satellite missions with an up-looking antenna. The FedSat 

onboard navigation solutions have shown large uncertainties and 

irregularities, and although an RMS accuracy of 56m was achieved, it was 

often with errors of a few hundreds and even thousands of metres. 

• The autonomous OD system at QUT has demonstrated the ability to provide 

tens of metres FedSat orbit accuracy with half-day delay.  

 
8.2 Scope and Limitation of the Research, Future Directions 
 

This research focuses on software aspects of onboard GPS orbit determination 

problem. As the computation will need to take time to complete after each data 

output, strictly speaking this is a near-real time solution. However, by the use of 

prediction the system can provide real time precise orbit knowledge to cover the 

delay due to the computation, which can be several to tens of minutes in length. In 

addition, although the techniques have been thoroughly tested using real LEO GPS 

data, additional efforts are needed to implement the algorithms into a real hardware 

platform. Issues of computing speed, memory usage and power consumption must be 

re-visited from the point of view of software and hardware engineering. To reach an 
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optimal performance revisions to the proposed methods are also required addressing 

the actual computing system. Apart from this, suggestions for future research are: 

• The computational burden of the Earth gravity acceleration method can be 

further improved. The storage penalty of 2.5 Mbytes is still not optimal. 

There are savings available in simply using more latitude bands (e.g. smaller 

incremental changes in λ∆ ). An investigation of other functional forms is 

planned, including continued fractions, in an effort to reduce the number of 

coefficients to be stored. 

• The research in extrapolation of Earth polar motion parametres was limited. 

Further efforts should be made in this area, as this will improve the orbit 

propagation accuracy and reduce the data upload frequency to the satellite. 

• This research is based on dual-frequency GPS measurements. Further 

research effort can be made to implement a solution with single-frequency 

GPS receivers.  

• A ground-based autonomous orbit determination is proposed in this 

dissertation. With the innovative combination of short-arc GPS orbit 

determination, long-arc GPS orbit determination, GPS precise single point 

positioning and SGP4 filter; the system can automatically generate multi-

layer orbit determination solutions. However, more research effort is needed 

to implement it as an operational system. 
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Appendix A 
 

An analytical solution of state transition matrix considering only the two-body forces, 

this is the computation formulae for the H in Equation (3.42): 
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Then for i =0,1,2 and 3, iS can be computed as: 
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Update 0E with E, the true anomaly angle: 
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Iteration is needed for the computation of E.  

To express the partial derivatives for time t  , the transcendental functions 



 233

 
( )

( )
⎪
⎪
⎭

⎪⎪
⎬

⎫

−
=

−
=

α
β
α
β

6/

2/

3
3

5

2
2

4

S
S

SS
    (A-6) 

of β  are used to determine the function: 
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Also, the accelerations are: 
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The following solution for the 36 partial derivatives is completely general for the 

elliptic case: 
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Appendix B 
 

The following directory chronologically lists the space missions that have included a 

GPS receiver or receivers for any number of reasons. The directory is not an all-

inclusive listing of spaceborne GPS missions flown, but is rather a comprehensive 

directory of missions that have been cited in scientific literature. Mission 

descriptions, the capacity that the GPS receiver or receivers are used in, the model of 

GPS receiver, references citing the mission relevant hyperlinks to mission home 

pages or other related sites can be found in Spaceborne GPS website [Spaceborne 

GPS mission directory, 2004]. 

 

Launch Date  Mission  Receiver(s)  

July 1982  Landsat4 GPSPAC 

March 1984 Landsat5 GPSPAC 

July 1991 ORBCOMM-X  -- 

June 1992 EUVE GPSDR 

August 1992 TOPEX/Poseidon GPSDR 

numerous flights Space Shuttle TANS  

June 1993  RADCAL TANS Quadrex  

July 1993  ORFEUS-SPAS-1 Alcatel/SEL  

September 1993  PoSat-1 TANS 

February 1994 OREX GPSDR 

March 1994 DARPASAT AST-V 

May 1994 TAOS/STEP-0 AST-V 

May 1994 STEP-2 AST-V 

August 1994 APEX TANS Vector 

November 1994 CRISTA-SPAS TANS Vector 

(1992 and 1994) COMET Ashtech SB24 

January 1995 Faisat-1 -- 

March 1995 SFU GPSR 

April 1995 ORBCOMM-FM1 TANS II 

April 1995 ORBCOMM-FM2 TANS II 

April 1995  OrbView-1 (formerly MicroLab-1) TurboStar 
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August 1995 FASat-Alfa TANS  

September 1995 Wake Shield Facility-02 TurboStar 

September 1995 Skipper TANS II 

January 1996 GADACS / SPARTAN OAST Flyer Two TANS Vectors 

May 1996 GANE / STS-77 TANS 

May 1996 MSTI-3 Viceroy 

May 1996 MOMS-2P Viceroy 

November 1996  HETE SEXTANT 

November 1996 Wake Shield Facility-03 TurboStar 

February 1997 HALCA (formerly MUSES-B) GPS 

March 1997 Zeya GPS and GLONASS 

August 1997 OrbView-2 (formerly SeaStar) redundant Viceroys 

August 1997 SSTI Lewis Two Tensors 

September 1997 Faisat-2v -- 

September 1997 IRS-1D -- 

October 1997  Falcon Gold TIDGET 

October 1997 YES (sub-satellite of TEAMsat satellite) TANS II 

November 1997  ETS-VII -- 

December 1997  Equator-S Viceroy 

December 1997  EarlyBird Vector and Viceroy 

February 1998  GFO Four TurboStars 

February 1998 Globalstar Tensor 

February 1998 SNOE MicroGPS 

July 1998  FASat-Bravo TANS II 

July 1998  TMSat-1 SGR-10 

October 1998  SEDSat-1 G12 

October 1998  ARD -- 

November 1998 International Space Station -- 

December 1998  SAC-A -- 

January 1999 ORSTED TANS, TurboStar 

February 1999  ARGOS -- 

February 1999  SUNSAT TurboStar 

April 1999  UoSAT-12 SGR-20 

April 1999 Ikonos-1 Rockwell C/A code 
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April 1999 ABRIXAS TANS II 

May 1999 IRS-P4 (OceanSat) -- 

June 1999 QuikSCAT 2 Viceroys 

September 1999 SRTM AstroNav 

September 1999 JAWSAT  TANS Vector 

late 1999 AMSAT Phase 3D Two TANS Vectors 

1999 STRV-C AstroNav 

1998 ARISTOTELES -- 

1998 TechSAT-II -- 

1997 and 1998 EOS-A and EOS-B -- 

1998 TSX-5 two TANS Vectors 

1999 SAC-C 
Lagrange, Tensor, 

AstroNav 

1999 QuickBird 2 Viceroys 

late '90s European Polar Platform -- 

late '90s RAMOS -- 

1999 Gravity Probe B 2 Vectors 

December 1999 CHAMP AstroNav 

summer 1999 OSEM Tensor or TANS Vector 

May 2000 Jason-1 AstroNav 

August 2000 VCL AstroNav 

2000 BIRD Rockwell Collins 

2001 MetOp-1  ESA GNSS receiver 

June 2001 GRACE AstroNav 

December 2002 FedSat-1 JPL BlackJack 

July 2001 ICESat AstroNav 

late 2001 BOLAS -- 

February 2003 Columbus Laboratory -- 

March 2003 ESA/ATV Tensor 

2004 STEP AST-V 

-- NASA/STV Mayflower receiver 

- Spartan Lite GEC Plessey Chipset 

- 
Orbit Maneuvering Vehicle and Orbit 

Transfer Vehicle 
-- 
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- MEDSAT -- 

2000 STENTOR -- 

- CESAR -- 
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